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ABSTRACT

Scientific analysis of motion and social interaction can identify animal models of human disease by

relating genetics or neural activity to behavior. However, experiments are often limited in scope

because they require vast quantities of expert annotation on private data. Attempts to automate

aspects of behavior science typically have limited interpretability and lack uncertainty representa-

tion. Errors will go unrecognized without manual inspection and propagate to hypothesis tests,

corrupting conclusions. In response, this dissertation develops principled Bayesian approaches to

low-level behavior analysis that discover the articulated part structure of a moving object and quan-

tify uncertainty in the motion of multiple objects. Uncertainty is used to identify possible errors

and automatically schedule sparse annotations. We apply parts modeling and tracking to primate

behavior data in experimental and observational settings, in one case contributing to the first ev-

idence supporting the use of primate animal models in autism research. We additionally develop

Marmoset100, a 100-hour RGB-Depth dataset of pairwise primate social interactions labeled with

25 high-level behaviors, and show that uncertainty representation in tracking estimates improves

behavior classification.

The Nonparametric Parts Model (NPP) discovers structure by learning articulated parts decom-

positions in an unsupervised fashion by briefly observing objects moving in an image, depth, point

cloud, or mesh sequences. NPP combines distributions on Lie groups with a Bayesian nonparamet-

ric prior to perform joint reasoning over an interpretable state-space model with nonlinear dynamics

and state-dependent observation noise. In developing sampling-based inference for NPP, we dis-

cover a novel and e�cient Gibbs decomposition for prior distributions on SE(D), the manifold of

rigid transformations. We show that NPP learns intuitive part segmentations for diverse objects

and enables both analysis and synthesis of relative part motion in the body frame.

The Joint Posterior Tracker (JPT) is a comprehensive Bayesian treatment of the general multi-

object tracking problem that quantifies uncertainty in the motion of multiple objects. JPT uniquely

performs asymptotically exact inference without gating heuristics or the combinatorial costs of

exponential and factorial complexity. We develop novel Metropolis-Hastings proposals that reason

over permutations of the latent space and enable e�cient posterior mode hopping that correspond

to possible confusion events. We show that JPT yields accurate uncertainty representation of data

associations with high performance on standard metrics. Finally, we use posterior uncertainty to

identify ambiguities in observed data and automatically schedule sparse human annotations that

rapidly improve posterior estimates and reduce uncertainty.

Thesis Supervisor: John W. Fisher III

Title: Senior Research Scientist of Electrical Engineering and Computer Science
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Chapter 1

Introduction
“To reject one paradigm without
simultaneously substituting
another is to reject science itself.”
— Thomas Kuhn

1.1 Scienti�c Analysis of Behavior
1.2 Interpretable Modeling
1.3 Representation of Uncertainty
1.4 Discovery of Structure
1.5 Contributions and Overview

Thesis statement:
Principled, scienti�c analysis of be-
havior needs probabilistic models
that reason over interpretable rep-
resentations, explicitly quantify un-
certainty, and are capable of discov-
ering novel structure.

This dissertation develops Bayesianmethods and theory that, although
general, are speciallymotivated by scienti�c work�owswhere humans
collaborate with probabilistic models in the principled collection and
analysis of data at scale. Three themes are emphasized throughout:

1. Interpretable latent representations to support iterative model
re�nement and principled follow-on analysis,

2. Representation of uncertainty to automatically identify ambigu-
ities in observed data and correct possible errors in inference,

3. Ability to identify structure that may not be known in advance,
to support �exible modeling and knowledge discovery.

These themes are relevant to human-machine collaborations in any
science, but this work focus on behavior science applied to primates.
Primate behavior is di�cult to observe relative to other species be-
cause their movements are rapid and varied. They include brachiation,
climbing, and jumping, often behind partial or total occlusion in fully-
3D environments (compared to e.g., mice, whose movements can often
be e�ectively represented in 2D). Primate behavior is of special inter-
est because their biology and social organization more closely match
those of humans as compared to many other animals [18, 100, 20, 180].
In what follows, challenges and opportunities in behavior science are
outlined (1.1), as are the above themes: interpretability (1.2), uncer-
tainty representation (1.3), and discovery of structure (1.4). Contribu-
tions are then summarized and the organization of this dissertation
outlined (1.5).

1.1 Scienti�c Analysis of Behavior

The controlled study of behavior in humans, animals or microorgan-
isms examines relationships between genes, neural activity, and life-
time development [194]. It commonly involves scientists observing
hundreds of hours of data (often video), annotating events on a clip-
board as they occur. This process limits the scope and scalability of
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behavioral studies because annotations are time-consuming, cannot be
done in realtime or at all times, and requires expertise or privacy that
prohibit crowdsourcing. Analysis is also limited to behaviors and phe-
nomena that scientists can directly and reliably observe, and subject to
disagreement in its interpretation, both within studies and especially
across studies [120].

Duration Subjects Behavior
7.41 C1, M2 Chase/Flee
4.24 C1, M2 Groom
6.77 C1, M2 Mount
12.5 C1, M2 Play

Figure 1-1: Example simpli�ed
ethogram collected from Macaque
studies in Chapter 5.3. The complete
annotations are multiple thousands of
lines long per annotator.

Behaviors of interest range from low-level position of one or more
individuals over time to mid-level actions like bite and jump as well
as high-level activities such as courtship or aggression. Position
may be coarsely represented by body centroid or �nely represented
by subject-speci�c pose. Behaviors over time are traditionally collected
by ethologists1 into ethograms [195] that can be represented by state- 1 An ethologist is a scientist who stud-

ies behavior. An ethogram is a repre-
sentation, often hierarchical, of behav-
ior over time.

space models (see Figure 1-1 for an example). Manual annotation of
low-, mid-, or high-level behaviors can take months, often at rates that
are two to three times slower than the rate of date input [7]. For ex-
ample, a recent study annotated 542 hours of primate behavior over a
three-month period [130].

Machine learning and vision are increasingly playing a role in the
study of behavior [7].Much of their use is aimed at reducing the human
burden of data collection by automatically inferring low- and high-
level behaviors. But, many contemporary approaches are black-box,
with limited interpretability and no model of uncertainty [134]. This
presents a fundamental challenge to their use in scienti�c work�ows,
where follow-on analysis seeks to build knowledge, often based on
principled hypothesis tests in experimental settings.

All models will make mistakes, but models with no uncertainty
representation will be unable to provide users with an awareness that
they may have done so. Inference results can be manually inspected or
else assumed correct, but inspection will not scale to tens of thousands
of hours of behavior data, and willfully accepting mistakes may cor-
rupt analysis, leading to incorrect conclusions. Erroneous conclusions
such asmisclassi�cation or incorrect recommendations are tolerable in
lower-stakes domains such as content-based image retrieval but they
pose serious problems in scienti�c settings.

The methods developed in this work can aid scientists in the study
of behavior. They include unsupervised generative models that infer
low-level behaviors—body motion and part articulation—as well as su-
pervisedmodels that infer higher-level behaviors from representations
with di�ering levels of interpretability. Their results are validated on
a variety of datasets, including novel primate behavior datasets.

1.2 Interpretable Modeling

Understanding what model inferences mean and why they occur re-
quires interpretability. Interpretability is about the representation used
to model a problem. This workmakes a distinction between intermedi-
ate and �nal representations. Final representations are unknown val-
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ues of interest such as classi�cation or regression estimates. Intermedi-
ate representations are additional degrees of freedom used by a model
to produce those estimates.

For example, a deep neural network for camera pose estimation
[107] has an interpretable �nal representation (the rotation and trans-
lation of a camera), but its intermediate representation (convolutional
weights) yield limited insights into why decisions are made. Post-hoc
analyses such as saliency maps [187] and class-activation maps [232]
can visualize prominent feature locations with respect to input or class
by plotting the magnitude of loss gradients with respect to input or
reprojecting output weights to previous convolutional layers, respec-
tively. These analyses do not clarify what onemight do to improve per-
formance; the typical response, then, is to increase network or dataset
size and try di�erent optimizers. Although black-box approaches often
achieve superior performance on classi�cation and regression metrics,
the limited insights they o�er may not be adequate for scienti�c anal-
ysis. Neither are large, labeled, datasets always cost e�ective to create,
particularly when each experiment may involve entirely new data.

1.2.1 A Bayesian Approach

An alternative, Bayesian approach is to explicitly model the process
that generated observed data with a series of functional relationships,
each of which is mathematically well-understood.2 The rationale is 2 Understanding is about properties as-

sociated with a representation or algo-
rithm and should not be confused with
the imperative knowledge of how to
perform some procedure.

thus: if each component of a model can be analyzed and interpreted
in meaningful ways, then so too should the whole. In this approach,
observations are assumed to be noisy estimates of some latent quanti-
ties that have �xed but unknown values. To reason about their value,
latent quantities are modeled as random variables whose distributions
are interpreted as a prior belief in their value. Combining the prior
distribution of each latent variable, the functional relationships of the
generating process, and the observed data yields a posterior distribu-
tion over the joint set of latent variables. Inference is the process of
drawing samples or computing summary statistics of the posterior,
which constitutes the model’s updated belief in the value of each la-
tent quantity.3 Hierarchies of latent variables can be stacked so that 3 As Edwin Jaynes articulated, this

model must be viewed as akin to a
four-year old child: it will believe any-
thing you tell it [98]. The model de-
parts with the child in that it will reason
consistently (where consistency is well-
de�ned by a set of axioms) with what-
ever prior belief and observations it is
provided. These properties make the
Bayesian approach desirable in a sci-
enti�c context where assumptions and
conclusions must be clearly articulated
and open to scrutiny.

the relationship between observed data and latent variables is de�ned
indirectly, through other latent variables. Graphical models [114] can
be used to visualize and encode dependencies between variables in a
generative model.

Generative modeling does not guarantee interpretability. Varia-
tional Autoencoders [111] and Generative Adversarial Networks [76]
de�ne generating processes that are intractable or implicit. But they
do so with many intermediary latent variables and transformations
that collectively learn an unknown function whose behavior is di�-
cult to analyze. Even Bayesian approaches can be rendered less inter-
pretable through the use of nuisance parameters—intermediary latent
variables whose values are deemed irrelevant to the problem, and may
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be introduced to make computation of the posterior distribution more
tractable rather than because they facilitate insight. Interpretability,
then, is about how well the components of a model are understood.
It can thus be improved by increasing mathematical understanding of
model components (as in the above class-activation maps), or by using
modeling components that are alreadymathematicallywell-understood.
Clearly, interpretability is not a binary property; rather, it exists on a
spectrum. Of note are mixed uses of more and less interpretable com-
ponents, as in the combination of neural networks, including Varia-
tional Autoencoders andGenerativeAdversarial Networks, with graph-
ical models [102, 121, 49]. The interpretability of an approach should
be dictated by the problem being solved. Approaches in this work are
motivated by scienti�c applications where inferences can be readily
analyzed in support of knowledge discovery. As such, it emphasizes
the use of well-understood model components.

1.2.2 Distributions on Expressive Spaces

It is di�cult to accurately model the generating process of complex
data using interpretable representations. Many physical processes are
described with constraints such as unit determinant for rotationmatri-
ces [8], boundary constraints for population modeling [173], and dif-
ferential constraints for nonholonomic motion [112]. Constraints are
straightforward to encode in probabilistic models, but make it di�-
cult to construct inference procedures that correctly sample from the
posterior implied by the model. One approach is to improve inference
techniques so that they can sample from posterior distributions with
constraints [5, 150, 224], but most approaches can only e�ectively han-
dle boundary discontinuities. Rejection sampling, where samples from
a proposal distribution without constraints are drawn and rejected if
they violate the constraints of the target distribution, is always an op-
tion, but they commonly fail to explore their targets [73]. Another ap-
proach is to de�ne probability distributions on more complex spaces
where constraints are implicitly satis�ed.

Probability distributions are traditionally de�ned on simple vector
spaces such as RD or Z. Distributions directly de�ned on more com-
plex spaces exist, but often have limitations. For example, the inverse
Wishart, de�ned on P(D),4 is limited by a single, shared concentra- 4

P(D) is the set of symmetric positive-
de�nite matrices of dimension D ⇥ D.tion parameter that controls variance in all dimensions [6]. New dis-

tributions can be de�ned on these spaces, but doing so often involves
involved mathematical derivations [200].

Lie groups and the manifolds they are de�ned on5 provide a parsi- 5 Lie groups are sets that locally have
Euclidean structure along with a di�er-
entiable binary operator whose inverse
is also di�erentiable. They will be dis-
cussed in more detail in Chapter 2.6

monious representation of the degrees of freedom in a system and are
interpretable owing to their long study [16]. Deriving a Lie group is in-
volved, but their representation and manipulation is often simple. The
operations they de�ne can implicitly respect system constraints, in-
cluding maintaining unit determinant when composing rotations and
maintaining symmetric positive de�nite structure when composing
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Figure 1-2: The exponential (blue) and logarithmic (green) maps on the Lie group of
proper rotations in two dimensions, SO(2). The tangent space about µ, TµG, can be
identi�ed with the Lie algebra g = so(2).

covariance matrices. By placing distributions on general Lie groups,
generative models can be constructed that have meaningful physical
interpretations without incurring the inference challenges associated
with handling explicit constraints.

A challenge to de�ning distributions on Lie groups is that many
of them are do not form vector spaces; hence, standard distributions
cannot be applied because notions of distance and norm do not im-
mediately exist. Naive application of distributions to Lie groups would
cause samples to be drawn that fail to respect group properties, thereby
losing physical interpretability and correctness. However, associated
with each Lie group G is a Lie algebra g that is locally de�ned about
the identity element of the group. Lie algebras forms a vector space
in which standard distributions can be de�ned. Elements of the alge-
bra can be locally mapped to elements of the group through (a typ-
ically nonlinear) exponential map, and elements of the group can be
locally mapped to elements of the algebra by a corresponding loga-
rithmic map. Most Lie groups of interest are Matrix Lie groups; that is,
elements of the group can be expressed as a matrix with appropriate
structure. In these cases, the exponential and logarithmic maps corre-
spond to thewell-understoodmatrix exponential andmatrix logarithm
[83] and the Lie algebra can be locally expanded about any element of
the group through left- or right-translation.

To de�ne a new distribution on the group, one need only apply
the Lie group logarithmic map to the argument of a standard prob-
ability distribution. The support of the new distribution, then, is the
group, but its arguments are mapped to the algebra, where all subse-
quent computation is performed. Arbitrary correlations between the
degrees of freedom in a group can be modeled by using an appropri-
ate distribution, such as the multivariate normal. Figure 1-2 shows an
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example where a Gaussian distribution is de�ned on the Lie group of
proper rotations in two dimensions. For rotations in higher dimen-
sions, this same approach provides greater modeling �exibility than
purpose-built rotation distributions such as the von Mises-Fisher [63],
which cannot represent distinct per-dimension variances or correla-
tion between dimensions. The bene�t of taking this approach over
de�ning a purpose-built distribution directly on the space of interest is
that standard distributions can be de�ned in the algebra and take ad-
vantage of the already-understood exponential and logarithmic maps
of a Lie group without having to perform involved derivations speci�c
to that space.

This work develops several probabilistic models over Lie groups
that are of interest to behavior analysis. In particular, SE(D) is used to
model the rigid-body dynamics of an object with an unknown num-
ber of articulating parts, and P(D) is used to model dynamics on the
joint kinematic states of multiple objects, in order to classify and ana-
lyze high-level behaviors. More broadly, probabilistic modeling on Lie
groups is advocated as a promising and underutilized approach to gen-
eratively modeling complex processes.

1.3 Representation of Uncertainty

In a Bayesian framework, the prior distribution can be interpreted as
a model’s state of knowledge, or belief, concerning the values of each
latent random variable. The posterior distribution is the model’s up-
dated belief in those values having accounted for observed data. Using
distributions to represent belief enables comparison of how well mod-
els with di�ering priors or generating processes explain observed data,
such as by using Bayes factors [142]. In a scienti�c setting, latent vari-
ables will correspond to quantities of interest, such as whether a par-
ticular gene a�ects the behaviors that an individual engages in. Repre-
senting belief with a distribution relaxes the need for a model to yield
a de facto (and possibly incorrect) answer. Instead, the model can be
interrogated with questions about the probability that a latent value
falls within some range or set of values. I call this approach princi-
pled because the assumptions, data generating process, and probabilis-
tic questions are all well-de�ned. In fact, Bayesian inference has been
shown to be the only consistent extension of Aristotelian logic from
boolean-valued propositions to propositions with degrees of plausibil-
ity [98]. Notably, Bayesian posteriors are uniquely determined given a
generating process and prior distribution for each random variable, as
well as a set of observed data.6 6 But note that Bayesian posteriors are

not usually invariant to reparameteriza-
tions of the prior [99].

Bayesian posteriors can be di�cult or impossible to represent com-
pletely. Exceptions exist for simple cases including discrete distribu-
tions with moderate numbers of states, continuous distributions with
moderate numbers of modes, and distributions in the exponential fam-
ily, where they can be perfectly summarized by a �nite collection of
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su�cient statistics [163, 47, 115]. Many posteriors do not fall into these
categories, however: they have no known analytic form, they exist in
high dimensions that bar discretization, or they have unknown struc-
ture; for example, an unknown number of modes. Figure 1-5 shows ex-
amples where posterior distributions have an exponentially-growing
number of states or a factorially-growing number of modes.

Figure 1-3: Representation of uncer-
tainty is often simple to represent
in continuous, unimodal distributions
(top), but multimodal data, whether
continuous (middle) or discrete (bot-
tom), is non-trivial to represent, espe-
cially when there are an unknown num-
ber of modes.

If a posterior cannot be completely represented, it can still summa-
rized. A collection of location-scale parameters, one for each mode, is
su�cient for distributions with known structure. Otherwise, a set of
independently and identically distributed (IID) samples can be drawn.
Collecting IID samples can in general be accomplished with Markov
Chain Monte Carlo (MCMC) methods [85], where a random process is
specially constructed so that successive samples from the process con-
verge in distribution to the desired posterior. Monte carlo estimates
computed on these samples converge to their true values as the num-
ber of IID samples grows. When posteriors are multimodal, many typ-
ical statistics, such as the moments of the distribution, become easy to
misinterpret. The mean of a two-mode distribution may lie in a region
of low probability, between the modes. The variance may be misin-
terpreted as broad uncertainty within a connected neighborhood of
values when in actuality each mode is highly peaked and the space
between them is substantial (Figure 1-3).

Multimodal posteriors denote ambiguity in the interpretation of
observed data. For example, when two objects with similar appearance
move indistinguishably close to each other and later depart, we would
like a tracker to convey that the objects may or may not have crossed
paths while they were close. The trajectory estimates will be similar
in either case, but the assignment of trajectories to objects di�ers. Fig-
ure 1-4 represents how this ambiguity is conveyed in the multimodal
posterior by the Joint Posterior Tracker, developed in Chapter 4.5.

We cannot hope to perfectly convey uncertainty in a posterior with
large numbers of modes; any representation will necessarily form an
underestimate. Hence, there will be ambiguity that the posterior accu-
rately conveys—the known unknowns—and ambiguity that exists but
is not conveyed—the unknown unknowns. Inability to convey all un-
certainty does not obviate the value of representing a portion of it.
The tracking example in Figure 1-5 have a multiplicative factor of K !
additional modes for every instance that K objects become indistin-
guishably close. Identifying even two ambiguous outcomes of each K !
factor is enough to draw attention to the region. We would like an
automatic method for identifying such ambiguities without resorting
to manual inspection and interpretation of the posterior, particularly
when that posterior may exist of dozens or hundreds of hours of data,
and may be represented by a set of hundreds to thousands of samples.

Posterior uncertainty can be summarized by entropy. Peaked pos-
teriors have low entropy whereas uniform posteriors have high en-
tropy. Intermediate values do not clarify whether a posterior has a
single mode with broad probability mass or else multiple modes. Re-
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Figure 1-4: Multimodal posteriors convey ambiguity in observed data. Multi-object tracking observations over time (black points
in orange box, middle) whereK = 2 targets (green, blue) begin separated–brie�y converge–then diverge. This ambiguity gives rise
to K ! distinct posterior modes in the Joint Posterior Tracker (JPT), which grow exponentially with additional ambiguous regions.
Here K ! = 2: either the targets crossed (left) or not (right). JPT explores high-probability regions in its posterior and represents
uncertainty in data association by a collection of posterior samples. Association events of high (left, right) and low (bottom)
probability are visualized as observations colored according to their associated target and inferred trajectories are plotted with
± 3� shading. Observe that within each mode, associations switch when targets are proximate but trajectory estimates remain
similar whereas between modes, associations switch when targets are separated, causing large variation in trajectory estimates.

gardless, a series of hypothetical experiments can be proposed whose
unknown outcomes can be simulatedwithin the generativemodel. The
results of each hypothetical experiment lead to a new posterior that is
conditioned on observing its results. If some of the experiments lead
to signi�cant reductions in posterior entropy then we conclude that
there is ambiguity in the original posterior and may choose to actually
perform (rather than just simulate) one or more of the experiments,
in batch or sequentially. This process can be repeated until entropy is
no longer signi�cantly reduced by further simulation of experiments.
Doing so is equivalent to maximizing the mutual information between
the original posterior and each considered experiment. Yet, absence of
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Figure 1-5: Posterior with an exponential number of states and factorial number of
modes. At each time t = 1, . . . ,T for T = 39 there are N = 3 observations to be
uniquely associated to K = 3 objects. Then, there are 3!T = 2.29e30 posterior states.
Assuming linear Gaussian dynamics for each object, there are a multiplicative M!
additional modes every time M objects become close. Here, there are 2! 2! 3! = 24
posterior modes. Each one is visualized as a single set of red, green, and blue lines.

proof is not proof of absence: posterior ambiguity may still be present
even when there is no uncertainty reduction from proposed experi-
ments. It is crucial, then, that considered experiments exploit knowl-
edge of both the problem being solved and the generative model they
exist within.

Chapter 4.7 develops uncertainty reduction for multi-object track-
ing where it is common for objects to be confused with one another,
usually because they move in proximity and have similar appearance.
Common benchmarks show thousands of these identity switching er-
rors for minutes-long sequences [136]. Multi-object tracking is vital
for scaling behavior science, but will produce incorrect conclusions if
trackers exhibit large numbers of identity switches. Collection con-
ditions can sometimes be created where ambiguities are minimized,
such as with the use of colored markings like collars and painted fur.
But these markings can require weeks-long habituation processes for
each animal, and are not always foolproof or available: subjects can re-
move specially-colored markers or keep them occluded for extended
periods of time, long-term tracking may also encounter arrival events
like animal birth, and not all can be specially-marked.7 7 Zebra�sh cannot wear a colored vest

or collar and are able to change appear-
ance based on their surroundings.

In thiswork, experiments are questions to a human annotator about
the assignment of measurements to objects in multi-object tracking.
Their answers are modeled as a noisy oracle (i.e., they are correct with
some probability). We show that a small number of automatically-
scheduled yes/no questions can rapidly reduce posterior uncertainty
and improve trajectory estimates. The framework for reducing pos-
terior uncertainty through sequential Bayesian experiment design is
introduced in Chapter 2.7 and developed for multi-object tracking in
Chapter 4.7.
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1.4 Discovery of Structure

Reliably tracking motion over time is a starting point for studying be-
havior, but more granular measurements are needed, including parts
modeling and behavior discovery. Typical approaches rely on hand-
designedmodels that amount to strong prior information or large quan-
tities of labeled training data in a supervised framework. These can
yield precise results but are bound by advance interpretations of what
is important to behavior modeling. This work emphasizes models that
automatically discover structure that is not known in advance, includ-
ing the number of articulating parts an object has (Chapter 3.4), the
number of objects present in a scene (Chapter 4.5), and di�erences
in behavior across experimental conditions (Chapter 5.3). I argue that
models should not be limited by strong, advance speci�cations of ex-
pected behavior if that is the object of study.8 8 Supervised approaches have a role to

play in behavior science, but it should
not be the only role.

Bayesian nonparametric (BNP) models discover structure by scal-
ing the complexity of their representation based on observed data;
hence, they can learn structure that humans are unaware of or unable
to specify in advance. Structure is learned by specifying a prior over
an in�nite-dimensional parameter space for which only a �nite sub-
set of parameters are required to describe a �nite observation set. As
the number of observations grow, so too do the parameters required to
describe them. BNP can be composed with distributions on expressive
spaces so that discovered structure has physical-grounded interpreta-
tions. Figure 1-6 shows a time-varying nonparametric mixture model
where the number of clusters, their individual and shared rigid trans-
formation dynamics, and shape are learned from collections of obser-
vations over time. This is a simple application of the Nonparametric
Parts Model (Chapter 3.4), whose latent representation be interpreted
as learning the number and articulated pose of an object’s parts over
time, simply by observing that object in motion over time.

BNP are not approachable to non-expert users, including behavior
scientists. Interpretation is made di�cult by dense, measure-theoretic
treatments of their underlying stochastic processes and implementa-
tion ismade challenging because inference often requiresmanual deriva-
tion and implementation.9 In particular, many BNP models require the 9 Gaussian processes [169] are an ex-

ception. Many machine learning pack-
ages implement basic forms, but users
will still struggle to implement cus-
tomized assumptions.

solution to a posterior predictive integral over an in�nite space that
has a known, analytic form only when there is conjugate structure.10

10 Conjugate structure occurs when the
composition of analytic distributions
results in another analytically-known
distribution.

Understanding conjugate structure requires knowledge of a plethora
of probability distributions while eschewing it requires special infer-
ence techniques.

Automatic inference engines exist for Bayesian models in the form
of probabilistic programming languages. Many, including Stan [37],
Tensor�ow Probability [196, 57], and PyMC [176], compute a joint
likelihood and its gradient from a generative speci�cation and apply
sophisticated HMC [146], NUTS [91], or ADVI [116] inference to ex-
actly or approximately draw posterior samples. This approach sep-
arates modeling from inference by abstracting the generative model
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Figure 1-6: Discovering the number of components, and their dynamics—common
and independent—in time-varying data. An unknown but �xed number of clusters
evolve over time according to rigid-transformation dynamics. (Top): Observations
over time. (Bottom): Posterior sample of the inferred number of clusters, their indi-
vidual dynamics (colored frames of reference) and their shared dynamics (black frame
of reference).

into function evaluations.11 This separation makes it easier for users 11 Abstracting a generative model into
likelihood and gradient evaluations is
similar to how optimization packages
abstract optimization problems to an
objective and its gradient.

to explore and implement di�erent models. Yet, exploiting conjugate
structure or otherwise estimating posterior predictive distributions in
BNP inference involves greater knowledge of the generative model
than these inference engines have access to. Furthermore, inference on
discrete and mixed continuous-discrete latent representations, com-
mon to BNP models, cannot be directly performed with HMC, NUTS,
or ADVI, though several works exist to approximate discrete distribu-
tions with continuous distributions [129, 198], as well as to perform
HMC-style sampling on discrete distributions [150]. Still, current ap-
proaches in gradient-based probabilistic programming inference is to
marginalize over discrete distributions—something that is not always
an option. BUGS and JAGS [36] use Gibbs sampling [74] inference and
can take advantage of conjugate structure but cannot leverage more
e�ective inference techniques, like HMC and NUTS, when available.
Anglican [219] stands out in that it implements a common nonpara-
metric prior, the Chinese Restaurant Process [165], as a primitive and
can handle mixed continuous-discrete distributions by using Particle
MCMC [10] inference, but it has a Lisp-based syntax that is inaccessi-
ble to non-expert users as well as most expert Bayesian users!

This work promotes Bayesian nonparametrics for behavior sci-
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ence but acknowledges that, at present, they are di�cult to use and
implement. The Nonparametric Parts Model is a speci�c contribution
with applications to behavior analysis. As part of deriving inference
for that model, a novel Gibbs decomposition is discovered for Concen-
trated Gaussian priors with Gaussian likelihoods. Additionally, a sim-
ple Monte Carlo sampling technique is demonstrated to e�ectively ap-
proximate a complicated, non-analytic posterior predictive. It is hoped
that these contributions motivate and simplify support for variable-
dimension latent spaces in automatic inference engines, where knowl-
edge of conjugate structures are exploited where possible.

1.5 Contributions and Overview

This dissertation combines Bayesian nonparametrics with probabilis-
tic reasoning over manifolds and joint inference over time-evolving
state-space models. Parts modeling, tracking, and both supervised and
unsupervised behavior approaches are speci�cally treated. More gen-
erally, it advocates for interpretable Bayesian approaches to scalable
behavior science.

Chapter 2 introduces Bayesianmodels and common sampling-based
inference techniques, used throughout this work. Discrete and con-
tinuous state space models are introduced for handling time-evolving
data. Both linear and nonlinear dynamics are supported through joint
realizations of the latent space, as opposed to more commonly used
�ltering and smoothing approaches. Manifolds used in this work, and
probabilistic reasoning on them, are then covered. Then, �nite and in-
�nite mixture models are discussed, as are their relation to state-space
models. Finally, sequential Bayesian optimal experiment design is in-
troduced as a general planning approach for reducing posterior uncer-
tainty through a series automatically-scheduled questions.

Chapter 3 develops the Nonparametrics Parts Model (NPP), which
learns the number, shape and motion of an object’s parts by observing
it in motion and assuming that its (unknown) parts orbit about a com-
mon, unknown body and evolve according to a random walk on SE(D)
the manifold of D-dimensional rotations and translations. Evaluations
show that NPP learns parts decompositions that accord with human
intuition, enables analysis of part motion relative to a body frame of
reference, and permits generative simulation of novel motion.

Chapter 4 develops the Joint Posterior Tracker (JPT), which per-
forms long-term multi-object tracking of objects in motion with ex-
plicit uncertainty quanti�cation. JPT outperforms baselines, both on
traditional multi-object tracking metrics and on a novel uncertainty
quanti�cationmetric. It also enables recovery from errors using human-
in-the-loop corrections that are automatically scheduled by sequen-
tially maximizing an objective based on information gain.

Chapter 5 relates parts modeling (Chapter 3) and tracking (Chap-
ter 4) to the scienti�c analysis of behavior. In Chapter 5.3, we conduct
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low-level behavior analysis of genetically mutant primates in an un-
supervised, experimental setting. Automated tracking from our Non-
parametric Extents Model (Chapter 5.3.1) saved scientists more than
250 hours of labeling e�ort. Tracks were provided to collaborators for
analysis, and contributed to the �rst evidence for primate animal mod-
els of autism (Chapter 5.3.4).

Chapter 5.4 describes Marmoset100, a novel RGB-Depth dataset
collected with collaborators. Marmoset100 consists of more than 1TB
of data with 100 hours of tracked observational video on pairwise pri-
mate social interactions. Thirty hours of video are labeled for 25 be-
haviors (Chapter 5.5). We classify behaviors in a supervised, observa-
tional setting based on varying multi-object tracking representations
and presence or absence of uncertainty (Chapter 5.5).We show that un-
certainty representation in tracking estimates improves behavior clas-
si�cation and that higher-quality tracking with simple, point-based
representations produces higher behavior classi�cation performance
than lower-quality trackingwith complex, pose-based representations.

The work on nonparametric parts modeling is published in [87].
Thework onmulti-object trackingwith uncertainty quanti�cation and
error recovery is available in [88] and featured in [231]. The work on
unsupervised behavioral analysis is published in [233].
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Chapter 2

Background
“Everything is hard before it is
easy.”
— Goethe

2.1 Plausible Reasoning
2.2 Bayesian Inference
2.3 Probability Distributions
2.4 Nonparametric Mixtures
2.5 State Space Models
2.6 Lie Groups
2.7 Bayesian Experiment Design

Foundations for the approaches used throughout this dissertation are
introduced in this chapter. I begin by motivating Bayesian modeling as
a generalization of deductive reasoning to plausible reasoning (2.1). In-
ference with focus on Markov Chain Monte-Carlo (MCMC) sampling
methods is then introduced for Bayesian models (2.2). Common prob-
ability distributions used in this work are covered in (2.3), including an
introduction to the Dirichlet Process. Coverage of the Dirichlet Process
continues with its application to mixture models (2.4). Then, common
models and probabilistic queries for time-evolving data are covered
(2.5) as is probabilistic reasoning on manifolds and Lie groups (2.6).
Last, Bayesian experiment design is covered (2.7).

2.1 Plausible Reasoning

Deductive reasoning is the repeated application of rules that relate
propositions to conclusions. Rules are of the form, “if A then B,” and
they lead to conclusions such as, “A, therefore B,” and “not B, there-
fore not A.” All that can be said of propositions and conclusions is bi-
nary: either they are true or false. This precision and clarity is available
and necessary in mathematics but insu�cient in science and daily life
[166]. Sensing an environment, navigating a crowded street, choosing
a hypothesis, building a model, and accepting circumstantial evidence
are all examples where information is limited and far from absolute,
yet people regularly navigate these situations e�ectively. Designing
agents to do the same requires a calculus not just about what is true
and false, but also about what is more and less plausible.

One derivation of a system for plausible reasoning [98] begins with
the following assumptions, where the last three are collectively de�ned
as consistency:

1. Degrees of plausibility are represented by real numbers.

2. If a conclusion can be reached in more than one way then every
possible way leads to the same conclusion.

3. All available evidence is used to form a conclusion.
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4. Equivalent states of knowledge are represented by equivalent
assignments of plausibility.

We desire away to compute the plausibility of a compound proposition
based on the plausibilities of simpler propositions. In particular, let
AB denote the logical conjunction (and) of propositions A and B. Let
A | C denote the propositionA conditioned on the propositionC . What
can be said of the plausibility of the proposition AB | C in terms of A
and B? It cannot be a function of A or B alone, because C would be
unaccounted for. There are �ve quantities that condition on C ,

(AB | C) (A | C) (A | BC) (B | C) (B | AC) (2.1)

and eleven possible relationships between AB | C and quantities that
condition on C (see Figure 2-1). It can be exhaustively proven [197]
that only two relationships satisfy our assumptions,

F1(�,w) F7(�,w,d)
F2(�,d) F8(�,w, e)
F3(�, e) F9(�,d, e)
F4(w,d) F10(w,d, e)
F5(w, e) F11(�,w,d, e)
F6(d, e)

u = AB | C � = A | C w = A | BC

d = B | C e = B | AC

Figure 2-1: The eleven possible func-
tional relationships for a product rule
of probability. Single-argument possi-
bilities are excluded because they can
be proven incorrect by counterexample.
Only F3 and F4 are consistent with our
assumptions for plausible reasoning.

w(AB | C) = w(A | BC)w(B | C) = w(B | AC)w(A | C) (2.2)

where w(A) denotes the plausibility of proposition A. Further analy-
sis reveals thatw must be a positive, continuous, monotonic function.
Two ranges of values for plausibility satisfy this:1 for completely im-
plausible to 1 for completely plausible, or 0 for completely implausi-
ble to 1 for completely plausible. By convention, we choose the latter:
0  w  1. Additional analysis ofw derives,

wm
(A | B) +wm

(¬A | B) = 1 (2.3)

for any positive real m where + denotes logical disjunction (or) and
¬ denotes logical negation. De�ning p(A) = wm

(A) in terms of Equa-
tions 2.2, 2.3, we have,

p(AB | C) = p(A | BC) p(B | C) = p(B | AC) p(A | C) (2.4)
1 = p(A | B) + p(¬A | B) (2.5)

which are the standard product and sum rules of probability theory,
with 0  p(A)  1 the familiar notation for the probability of A. The
product and sum rules form a complete set of rules for plausible reason-
ing in the same way that conjunction and negation form a complete
set of rules for deductive reasoning. Most importantly, Bayes rule is
easily derived from Equation 2.4 by assuming C = ;:

p(A | B) =
p(AB)

p(B)
=
p(B | A) p(A)

p(B)
(2.6)

The numerator is the joint distribution between A,B and the denomi-
nator is the evidence, which can also be expressed as the marginaliza-
tion over A of the joint distribution, p(A) =

Ø
B p(A,B).

In Bayesian modeling,A usually forms a set of latent random vari-
ables and B denotes a set of observations. Hence, p(A) constitutes a
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prior distribution over latent variables and p(A | B) is the posterior
conditioned on observations which are modeled with likelihood p(B |

A). Throughout this work, observations will be denoted by� and latent
variables by other letters, most commonly x for continuous variables
and z for discrete variables.

Bayesian modeling is one of several systems for plausible infer-
ence. It provides a well-de�ned mechanism for updating belief in the
face of new evidence but is limited by the requirement that the condi-
tional distribution for each random variable be precisely speci�ed. As
argued in Chapter 1, this is desirable and aids interpretability in scien-
ti�c work�ows. Other systems for plausible reasoning relax this con-
straint, allowing for the speci�cation and combination of contradictory
or partial evidence. They include Dempster-Shafer Theory and Belief
Functions [183], imprecise probabilities [210], and fuzzy sets [225]. A
recent tutorial relates several of these approaches for the interested
reader [51].

2.2 Bayesian Inference

Constructing a Bayesian model involves de�ning a set of random vari-
ables and the distributions that generate them. The same model can
be used to solve multiple problems, but the probabilistic queries will
di�er. In general, variables are distinguished by whether they are ob-
served or latent, and some question is asked that involves inference—
the updating of belief—over the latent variables conditioned on the
observed variables.

Let x 2 RD be a set of latent random variables and � 2 RN be a
set of observations. Two common inference tasks are to estimate the
posterior distribution,

p(x | �) =
p(� | x) p(x)

p(�)
(2.7)

and to estimate the posterior predictive distribution:

p(�̂ | �) =

π
x
p(�̂ | x) p(x | �) (2.8)

The posterior requires calculation of the integral,

p(�) =

π
x
p(� | x) p(x) (2.9)

which is similar in form to the posterior predictive (Equation 2.8), but is
taken with respect to the prior. In general, neither integral is tractable.
There may be too many states to integrate over or they may not have
a known, analytic form. A prominent exception occurs when p(x) and
p(� | x) have conjugate structure, so that their parametric forms are
similar enough that their combination retains the same parametric
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form, though with di�erent parameters. Conjugacy most commonly
occurs when the prior and the likelihood belong to the exponential
family [208], though there are exceptions.12 Conjugate structure pro- 12 The uniform distribution is not in the

exponential family yet has a conjugate
prior: the Pareto distribution.

vides an analytic posterior that has known moments and is easy to
sample from. Analysis or summary of a posterior with analytic form,
such as computing the most probable value along with a credible inter-
val, computing quantiles, or computing measures of uncertainty like
entropy can be straightforwardly accomplished.

Many inference problems lack conjugate structure, most notably
mixture models, which underpin much of the contributions in this
work. In some cases, a MAP (maximum a posteriori) estimate su�ces,

xMAP = argmax
x

p(x | �) = argmax
x

p(� | x) p(x) (2.10)

where the second equality follows because p(�) is an unknown con-
stant. The MAP estimate corresponds to the mode of a unimodal pos-
terior, or to one of several modes in a multimodal posterior, but it may
not be a representative sample!13 The MAP estimate can be computed 13 The typical set of distributionp(x | �)

is the set of sequences {x1, . . . , xS } of
IID draws whose entropy can be made
arbitrarily close to e�H (x |�). The MAP
estimate commonly lies outside the typ-
ical set, particularly in high dimensions.
See [25] for more discussion.

with analytic form in simple cases but, in general, will require use of an
optimization algorithm such as L-BFGS, Adagrad, RMSProp, or Adam
[31, 113]. When there are multiple modes, the result of an optimiza-
tion will correspond to one of the modes, but it may not actually be
the mode with highest probability mass.

MAP estimation is convenient because it can be performedwithout
estimating an integral. It is limited because it summarize a posterior
with a single point, eschewing any representation of uncertainty. One
simple approach to estimating uncertainty that also avoids integrals is
the Gaussian approximation,

H =
@2p(x | �)

@x @x>

���
xMAP

p(x | �) ⇡ N
�
x | xMAP,H

�1� (2.11)

where H is the Hessian of the posterior estimated about xMAP. The
Gaussian assumption implies that the estimate will have a single mode.
If p(x | �) is actually multimodal, this will be a poor approximation.
Note also that Gaussian approximation cannot be done for discrete or
mixed continuous-discrete latent spaces.

2.2.1 Markov Chain Monte Carlo

When accurate uncertainty estimation is required and p(�) is di�cult
to evaluate, we turn to the most general methods for posterior infer-
ence: Markov Chain Monte Carlo (MCMC). MCMC approaches iter-
atively sample from a specially-constructed stochastic process whose
samples are eventually distributed according to p(x | �). In this sec-
tion, I show a general approach to constructing processes that sample
from p(x | �). Following, I provide speci�c sampling algorithms. The
interested reader is referred to [70] for comprehensive treatment of
Markov chain fundamentals in the context of MCMC.
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To begin, let {xs }1s=1 be a sequence of random variables where xs
is de�ned on some space X. If p(xs | x1:s�1) = p(xs | xs�1), then
we say that the sequence is a Markov chain. Let T (x 0 | x,�) be the
transition distribution that generates successive values on this Markov
chain (where� are the �xed observations fromEquation 2.7).Wewould
like the values xs to be distributed according to the posterior p(x | �).
Under mild assumptions,14 a su�cient condition for this to occur is if 14 T (x 0 | x,�) must also be aperiodic (it

doesn’t get into state transition cycles),
irreducible (can go from any state to any
other in �nite time), and not transient
(it will return to the current state with
probability one).

detailed balance is satis�ed,

T (x 0 | x,�) p(x | �) = T (x | x 0,�) p(x 0 | �) (2.12)

for all x, x 0 2 X. If this holds, then we say that the Markov chain with
transitionT (x 0 | x,�) has p(x | �) as its unique stationary distribution.
Our goal, then, is to construct a transition distributionT (x 0 | x,�) such
that detailed balance holds. De�ne,

R(x 0 | x,�) =
p(x 0 | �) q(x | x 0,�)

p(x | �) q(x 0 | x,�)
(2.13)

A(x 0 | x,�) = min(1,R(x 0 | x,�)) (2.14)

where q(x 0 | x,�) is some proposal distribution from which a new
state x 0 can be sampled given that the current state is x . We call R
the Metropolis-Hastings ratio, and A the acceptance probability. Now,
de�ne the transition distribution as,

T (x 0 | x,�) = (2.15)(
q(x 0 | x,�) A(x 0 | x,�) if x 0 , x

q(x | x,�) +
Ø
x 0,x q(x

0
| x,�)(1 �A(x 0 | x,�)) if x 0 = x

where the �rst line captures the case where we sample q(x 0 | x,�) and
accept it with probability A(x 0 | x,�) and the second line is the case
where we transition to x 0 = x , which can occur either by sampling
q(x 0 | x,�) = q(x | x,�)when x 0 = x , or by proposing some other state
x 0 with density q(x 0 | x,�) and rejecting it with probability 1 � A(x 0 |
x,�), integrated over all possible states x 0 , x . Suppose,15 15 The less than and equal cases can also

be handled but we do not cover them.
p(x | �) q(x 0 | x,�) > p(x 0 | �) q(x | x 0,�) (2.16)

then by dividing the LHS by the RHS, we get R(x | x 0,�) > 1, and so
A(x | x 0,�) = 1 and R(x 0 | x,�) = A(x 0 | x,�) < 1. To show detailed
balance, assume we have moved from state x to x 0 where x 0 , x . This
is governed by the �rst case in Equation 2.15 so that:

T (x 0 | x,�) = q(x 0 | x,�) A(x 0 | x,�) (2.17)

= q(x 0 | x,�)
p(x 0 | �) q(x | x 0,�)

p(x | �) q(x 0 | x,�)
(2.18)

=
p(x 0 | �)

p(x | �)
q(x | x 0,�) (2.19)
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Equation 2.18 follows because A(x 0 | x,�) = R(x 0 | x,�). Combining
Equation 2.17 with Equation 2.19, we have,

T (x 0 | x,�) p(x | �) = p(x 0 | �) q(x | x 0,�) (2.20)

Now, the reverse transition is,

T (x | x 0,�) = q(x | x 0,�) A(x | x 0,�) (2.21)
= q(x | x 0,�) (2.22)

where Equation 2.22 follows from Equation 2.21 because we estab-
lished that A(x | x 0,�) = 1. Substituting Equation 2.22 into Equa-
tion 2.20 we have,

T (x 0 | x,�) p(x | �) = p(x 0 | �) T (x | x 0,�) (2.23)

hence, detailed balance is satis�ed, implying that samples drawn ac-
cording to T (x | x 0) will eventually be distributed according to the
posterior p(x | �).

2.2.2 Metropolis-Hastings

Section 2.2.1 demonstrates how to construct a Markov chain that sat-
is�ed detailed balance so that the posterior is its unique stationary
distribution. The transition function (Equation 2.15) is used by the
Metropolis-Hastings algorithm to sample from p(x | �). Observe that
the posterior is evaluated in the transition function, but only as a ra-
tio: p(x 0 | �)/p(x | �) so that the normalization constants p(�) can-
cel out. This construction makes it possible to sample from the pos-
terior p(x | �) when it can only be evaluated up to proportionality.
We call p̃(x | �) = p(� | x) p(x) the unnormalized posterior because
p(x | �) = p̃(x | �)/p(�). Algorithm 1 gives the Metropolis-Hastings
(MH) algorithm, which can be used any time the generative model
(prior and likelihood) are known.

Algorithm 1: The Metropolis-Hastings Algorithm
Input : x,�, proposal q, unnormalized density p̃
Output: x 0

1 Sample x 0 ⇠ q(x 0 | x,�)
2 Evaluate R(x 0 | x,�) = p(x 0 |�) q(x |x 0,�)

p(x |�) q(x 0 |x ,�)
3 Evaluate A(x 0 | x,�) = min (1,R(x 0 | x,�))
4 Samlpe u ⇠ Unif(0, 1)
5 if u < A(x 0 | x,�) then return x 0

6 else return x

The one degree of freedom in Metropolis-Hastings is the proposal
distribution q(x 0 | x,�). When q depends on observations �, we say
that it is a data-driven proposal, otherwise if q(x 0 | x,�) = q(x 0 | x),
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we say that it is an independent proposal. Determining proposal dis-
tributions that are general and e�cient constitutes much of the con-
tributions in the literature, including this dissertation. A special case
of the MH algorithm was developed by [135] and later generalized by
[85]. A fascinating history of the development of sampling algorithms
is written in [172].

2.2.3 Gibbs Sampling

Let x = {xd }Dd=1 be the joint latent state and de�ne x�d = x \ xd as the
set of all latent states except xd . Then, omitting dependence on�, Gibbs
sampling is useful when each of the D full conditional distributions
p(xd | x�d ) can be e�ciently sampled from, either because they have
analytic form or they are easier to sample than is the joint posterior
p(x | �). When this is the case, a special set of D proposal distributions
can be used in Metropolis-Hastings. They require no tuning and are
accepted with probability one. For x 0 a newly proposed joint state from
current state x , let the d th proposal have the form,

q(x 0 | x) = p(x 0d | x�d )�x 0
�d=x�d (2.24)

where �x 0
�d=x�d = 1 if all but the d th variable are equal in the proposal

and the previous state (and is 0 otherwise). Then, the MH ratio is,

R(x 0 | x) =
p(x 0) q(x | x 0)

p(x) q(x 0 | x)
(2.25)

=
p(x 0d | x 0

�d ) p(x
0

�d ) p(xd | x 0
�d )�x�d=x 0�d

p(xd | x�d ) p(x�d ) p(x 0d | x�d )�x 0
�d=x�d

(2.26)

=
p(x 0d | x 0

�d ) p(x
0

�d ) p(xd | x 0
�d )

p(xd | x 0
�d ) p(x

0

�d ) p(x
0

d | x 0
�d )

(2.27)

= 1 (2.28)

where Equation 2.27 follows assuming that only the d th variable of
proposal x 0 is modi�ed.

Gibbs sampling is a useful Metropolis-Hastings technique because
it requires no special considerations for a proposal distribution: the
proposal is implied by the model. One drawback is that Gibbs sam-
plers can only move in a coordinate-aligned fashion, which can cause
them to fail to explore posteriors where components of x are highly
correlated. Gibbs sampling was developed in [74]; it is frequently used
in models with mixed continuous-discrete latent spaces where e�-
ciently drawing joint samples can be di�cult. Finally, the full condi-
tionals need not be able to be analytically sampled from: in a scheme
known as Metropolis-Within-Gibbs, any Metropolis-Hastings method
that targets p(xd | x�d ) will maintain the originally-desired stationary
distribution p(x | �). The Gibbs sampling procedure is in Algorithm 2.
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Algorithm 2: The Gibbs Sampling Algorithm
Input : x = (x1, . . . , xD ),�
Output: x 0

1 Let x 0 = x
2 for d 2 1, . . . ,D in random order do
3 Sample x 0d ⇠ p(x

0

d | x 0
�d ,�)

4 return x 0

2.2.4 Slice and Beam Sampling

In slice sampling, an augmented distribution,

p(x,u | �) =

(
1

p(�) if 0  u  p̃(x | �)

0 o.w.
(2.29)

is de�ned, which has marginal:
π p̃(x |�)

0

1
p(�)

du =
p̃(x | �)

p(�)
= p(x | �) (2.30)

To sample from p(x | �) we thus sample from p(x,u | �) and only
consider the marginal p(x | �). Similar to Gibbs sampling, this can be
accomplished by repeatedly sampling each conditional:

p(u | x,�) = Unif (0, p̃(x | �)) (2.31)
p(x | u,�) = Unif ({x : u < p̃(x | �)) (2.32)

The construction of p(x,u | �) makes the �rst conditional straight-
forward to sample from. The second conditional is more challenging
because we won’t typically know the values x that fall below a given
unnormalized density. When x is univariate and bounded, this set can
be enumerated. When x is multivariate, then the conditional p(x | u,�)
can be broken intoD dimensions, each treated as a univariate distribu-
tion. More generally, [145] de�nes several approaches that iteratively
expand about a neighborhood of x so that the Markov chain remains
invariant to the conditional p(x | u,�). In this work, slice sampling is
used to e�ciently sample univariate rotation values from multimodal
distributions. Though the sampler can get stuck in a single mode, a
�xed series of MH proposals enumerate all other modes given a sam-
ple from one mode. See Chapter 3.5.3.

Slice sampling forms the basis for several exact samplers in non-
parametric models, most notably the Dirichlet Process Mixture Model
[209, 105, 71], where conjugacy is not required, and in in�nite state
space models, where it is called the beam sampler [203]. The striking
feature of this approach is that it can exactly reason over an in�nite
number of atoms (or states) but it only ever considers a �nite set of
them in any individual sample. We sketch this approach for Dirichlet
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Process Mixture Models, de�ned in Section 2.4.3.
Let x =

⇣
{�k , �k }1k=1, {zn}

N
n=1

⌘
and � = {�n}Nn=1 where �k are an

in�nite collection of mixture weights, �k are an in�nite collection of
mixture parameters, and zn = k denotes that observation �n is gener-
ated by mixture k . Then, the likelihood for the nth observation can be
written,

p(�n | � , � ) =
1’
k=1

�k fk (�n) (2.33)

where fk (�n) is the observation model for mixture k with parameters
�k . For each n, augment Equation 2.33 with auxiliary variable un ⇠
Unif(0, �zn ). Then,

p(�n,un | � , � ) =
1’
k=1

Unif (un | 0, �k ) �k fk (�n) (2.34)

=

1’
k=1

1
�k

�0un �k �k fk (�n) (2.35)

=

1’
k=1

�0un �k fk (�n) (2.36)

/

’
k :

�k �un

fk (�n) (2.37)

As in slice sampling, Equation 2.33 is the marginal of Equation 2.36
when integrating un out. Importantly, Equation 2.36 is non-zero for
only a �nite number of terms, which is made explicit in Equation 2.37.
A sampler can thus be constructed where, at each iteration, there are
only ever a �nite number of atoms in the latent state. Algorithm 3 gives
the procedure.

2.2.5 Reversible-Jump MCMC

Reversible Jump Markov Chain Monte Carlo (RJMCMC) extends the
Metropolis-Hastings algorithm to a union space so that posterior in-
ference can move between dimensions (such as by adding or removing
a mixture model component). RJMCMC allows for model selection to
be carried out as part of posterior inference.

Let u be a set of proposed random variables drawn according to
u ⇠ q(u | x,�). Let x 0,u 0 = h(x,u) for some deterministic, invertible
function h, where x 2 RD, x 0 2 RD0,u 2 RU ,u 0 2 RU 0 such that the
input and output dimensions match:D+U = D 0+U 0. Then, [78] shows
that the acceptance probability,

min
✓
1,
p(x 0 | x,�) q(u | x 0,�)

p(x | x 0,�) q(u 0 | x,�)

����@h(x,u)@(x,u)

����
◆

(2.38)

satis�es detailed balance with respect to posterior p(x | �). The stan-
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dard MH acceptance probability (Equation 2.14) is recovered when h
has unit Jacobian determinant.

Algorithm 3: Slice Sampler for Dirichlet Process Mixtures
Input : �, x = (z, � , � )
Output: z 0, � 0, � 0

1 for n 2 1, . . . ,N do Sample un ⇠ Unif(0, �zn )
2 Let u⇤ = maxn un
3 Let K⇤ = |� | be the current number of components

/* Recover beta variables */

4 for k 2 1, . . . ,K⇤ do Let �k = �k/
Œk�1

i=1 (1 ��i )
5 Let �⇤ =

ŒK ⇤
k=1(1 ��k ) be the remaining stick length

/* Instantiate additional components */

6 while �⇤ < u⇤ do
7 Let K⇤  K⇤ + 1
8 Sample �K ⇤ ⇠ Beta(1,�), �K ⇤ ⇠ H
9 Let �K ⇤ = �K ⇤ �⇤

10 Let �⇤  �⇤(1 ��K ⇤)
/* Sample new associations */

11 for n 2 1, . . . ,N do Sample p(zn = k) / fk (�n)��k �un
12 for k 2 1, . . . ,K⇤ do
13 Let nk = |{zn : zn = k}|
14 if nk = 0 then

/* Remove empty components */

15 �  � \ �k
16 �  � \ �k
17 else

/* Sample �k posterior, update mixture weights */

18 Sample �k ⇠ p(�k | �, z)

19 Sample �̃k ⇠ Beta(1 + nk ,� +
ÕK ⇤

j=1 nj
20 Let �k = �̃k

Œk�1
i=1 (1 � �̃i

21 return x 0 = (z, � , � )

2.2.6 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) augments the latent space x 2 RD
with randomly sampled momentum variables u 2 RD so that their
joint distribution is,

p(x,u) =
1
Z

e�U (x |�) e�K (u) (2.39)

where potential energy U (x | �) = � log p̃(x | �) and kinetic energy
K(u) = N(u | 0,M) so theU (x | �)+K(u) de�ne a Hamiltonian, which
is simulated for L timesteps to propose a new augmented state (x 0,u 0)
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that is accepted with probability:

min
⇣
1, eH (x ,u)�H (x ⇤,u⇤)

⌘
(2.40)

Simulation requires the ability to evaluate @U (x )
x , the gradient of the

negative log unnormalized posterior; hence, HMC can only sample
from continuous distributions. When Hamiltonian dynamics can be
simulated exactly, the acceptance ratio will always be one. Otherwise,
simulation requires careful selection of an integrator, with the leapfrog
integrator being a common choice. Formore details and extensions, see
[146, 25, 150, 91].

2.3 Probability Distributions

The generating processes of Bayesian models are composed of func-
tional relationships between random variables that can be compactly
described by conditional probability distributions. This section intro-
duces probability distributions that are commonly used throughout
this work, including their probability density function (PDF) if contin-
uous or probability mass function (PMF) if discrete. First and second
moments are conveyed without derivation, as are useful properties or
operations used throughout this work. Pointers are given to how each
distribution is used in this work and notation is kept as consistent as
possible with their later use. Formore thorough coverage, see [73, 142].

2.3.1 Multivariate Gaussian

For x, µ 2 RD , � 2 P(D), the PDF of the Multivariate Gaussian is,

N (x | µ, �) = (2� )�N /2
|�|�1/2 exp

✓
�
1
2
(x � µ)>��1(x � µ)

◆
(2.41)

where µ is the mean of the distribution, � is the covariance, and |�|
is the determinant of �. Gaussian marginals are themselves Gaussian,
and so are Gaussian conditionals, implying that Gaussians are conju-
gate with themselves. In particular, if p(� | x) = N (� | x,R) and p(x) is
de�ned as in Equation 2.41 then,

p(x | �) = N
�
x | µx |�, �x |�

�
(2.42)

��1x |� = ��1 + R�1 (2.43)

µx |� = �x |�
�
R�1� + ��1µ

�
(2.44)

p(�) = N (� | µ, � + R) (2.45)

Multivariate Gaussians are extensively used throughout thiswork, par-
ticularly as a likelihood for parts modeling and tracking.
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2.3.2 Inverse-Wishart

For �, S 2 P(D),� > D � 1 2 R, the PDF of the Inverse-Wishart
distribution is,

IW (� | S,�) =
|S |�/2

2(�D)/2�D (�/2)
|�|�(�+D+1)/2e�

1
2 tr(S�

�1
) (2.46)

where �D is the multivariate gamma function,

�D (�/2) =
π
R2P(D)

e�tr(R) |R |
�
2 �

D+1
2 (2.47)

and tr() is the trace of its matrix argument. The Inverse-Wishart has
moments,

E[�] = S/(� � D � 1) (2.48)

Var[�i j ] =
(� � D + 1)S2i j + (� � D � 1)SiiS j j
(� � D)(� � D � 1)2(� � D � 3)

(2.49)

where �i j , Si j are the 1  i, j  D elements of matrices �, S . The
Inverse-Wishart is conjugate to a Multivariate Gaussian with known
mean and unknown covariance. In particular, letp(� | µ, �) = N (� | µ, �)
and let p(�) be de�ned as in Equation 2.46. Then,

p(� | �) = IW
�
� | S + (� � µ)(� � µ)>,� + 1

�
(2.50)

It is also common to use a joint Normal-Inverse-Wishart prior, which
is conjugate to Multivariate Gaussian likelihoods with unknownmean
and covariance. For � > 0,

NIW (µ, � | µ0,�, S,�) = N
�
µ | µ0,�

�1�
�
IW (� | S,�) (2.51)

but this forces uncertainty in the mean µ to be proportional to uncer-
tainty in the covariance. Alternatively, unconditionally independent
priors can be speci�ed for the mean and covariance of a Multivariate
Gaussian likelihood. In this case, conjugacy is lost but the full condi-
tionals for the mean and covariance are separately conjugate,16 and so 16 Also known as semi-conjugacy,

which occur when the full conditionals
of a collection of priors are separately
but not jointly conjugate with the like-
lihood

can be analytically sampled as part of a Gibbs sampler. Models in this
work bene�t from keeping the prior mean and prior covariance un-
conditionally independent; hence, the Normal-Inverse-Wishart prior
is not used as commonly as separate Normal and Inverse-Wishart pri-
ors. Inverse Wishart distributions are used throughout this work as
prior distributions on noise covariances for latent dynamics and ob-
servation noise.

2.3.3 Dirichlet and Beta

Let�K =
�
�1:K : 0  �k  1,

ÕK
k=1 �k = 1

 
be the probability simplex

in K dimensions. Then, the Dirichlet distribution with concentration
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parameter � 2 RK such that 0  �k  1 has support on the probability
simplex with PDF,

Dir (� | �) =
�(

ÕK
k=1 �k )ŒK

k=1 �(�k )

K÷
k=1

��k�1
k (2.52)

where � is the univariate special case of the multivariate gamma func-
tion (Equation 2.47). The Dirichlet has moments,

E[�j ] =
�jÕK
k=1 �k

(2.53)

Var[�j ] =
�j � 1ÕK

k=1 �k � K
(2.54)

for 1  j  K . The Dirichlet is a distribution over K-dimensional dis-
crete distributions and is often used as a conjugate prior to the Multi-
nomial and Categorical distributions, de�ned below.

When K = 2, the Dirichlet distribution is known as the Beta dis-
tribution with parameters a = �1,b = �2. While � 2 �2, the Beta
distribution’s support is over 0  �1  1 since �2 = 1 � �1 can be
determined from �1. The Beta PDF is:

Beta (�1 | a,b) =
�(a + b)

�(a)�(b)
�a�1
1 (1 � �1)b�1 (2.55)

The Beta distribution is conjugate to Binomial distribution andmarginals
of the Dirichlet are beta-distributed,

�k = Beta

 
�k | �k ,��k +

K’
k=1

�k

!
(2.56)

In this work, the Dirichlet distribution is used as a prior distribution
over mixture model weights for parts modeling and the Beta distribu-
tion is used in one of several constructions of the Dirichlet Process.

2.3.4 Binomial

For n � 0 2 Z the number of trials of a random binary event, each
with independent probability of success 0  p  1, the Binomial dis-
tribution models the number of successes k in n trials. It has PMF,

Bin (k | n,p) =

✓
n

k

◆
pk (1 � p)n�k (2.57)

where
�n
k
�
= n!

k !(n�k )! is the binomial coe�cient. It has moments,

E[k] = np (2.58)
Var[k] = np(1 � p) (2.59)
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The binomial distribution is used in this work to model random object
arrivals and departures in multi-object tracking.

2.3.5 Multinomial and Categorical

Letn � 0 2 Z be the number of trials of a random eventwithK possible
outcomes. Let � 2 �K be the K probabilities of each outcome, inde-
pendent across trials. Let z = (z1, . . . , zK ) model the counts of each
outcome. Then, z is distributed according to the multinomial distribu-
tion, which has PMF:

Mul (z | n, � ) =
n!

z1! · · · zK !

K÷
k=1

� zk
k (2.60)

The multinomial has moments,

E[zk ] = n�k (2.61)
Var[zk ] = n�k (1 � �k ) (2.62)

Themultinomial is the generalization of the binomial distribution from
two outcomes to K  2. Additionally, when the there is only a single
trial (n = 1), then we call it the categorical distribution,

Cat (z | � ) = Mul (z | 1, � ) (2.63)

Categorical randomvariables are extensively used throughout thiswork
to model associations of observations to objects or parts.

2.3.6 Poisson

For rate � 2 (0,1), the Poisson distribution models the number of
events a that occur within a �xed interval. It has PMF,

Pois (a | �) =
�ae��

a!
(2.64)

with moments, E[a] = Var[a] = �. The Poisson is the limit of the
Binomial distribution when the probability of success in each trial is n

�
and the number of trials n !1. In this work, the Poisson distribution
is used to model random object arrivals and clutter detections in multi-
object tracking.

2.3.7 Dirichlet Process

TheDirichlet Process (DP) is a family of stochastic processes17 over the 17 Stochastic processes are distributions
over function spaces. Probability distri-
butions are functions de�ned on some
space � that are everywhere positive
and which integrate to unity.

space of probability distributions. It is similar to the Dirichlet distribu-
tion in that its samples can be interpreted as discrete distributions,18

18 Technically, DP samples are discrete
almost surely; that is, the set of excep-
tions has null probability.

but they exist in spaces more general than the probability simplex that
Dirichlet samples are limited to. They were �rst developed in [60].
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The Dirichlet Process is a more complicated object than other dis-
tributions in this chapter. We begin by de�ning relevant notation and
conditions for a random variable to be distributed according to the
Dirichlet Process. Let � 2 R+ and H be any probability distribution
with parameters � and support over the space �. Let A1, . . . ,AK be
any �nite partitioning of �:

� =
Kÿ
k=1

Ak such that Ai \Aj = ; 8i , j (2.65)

Let G be a discrete distribution, and for all k , let G(Ak ),H (Ak ) denote
the probability mass assigned to Ak ⇢ � under the distributions H ,G,
respectively. Then, we say G is distributed according to the Dirichlet
Process with concentration � and base measure H if:

G(A1), . . .G(AK ) ⇠ Dir (�H (A1), . . . ,�H (AK )) (2.66)

That is, for every �nite partitioning of �, the marginals ofG are jointly
distributed according to the Dirichlet distributionwhosek th parameter
is the probability mass of Ak under distribution H scaled by the DP
concentration parameter � . Notationally, we write:

G ⇠ DP(�,H ) (2.67)

For any A ⇢ �, the �rst two moments of G are,

E[G(A)] = H (A) Var[G(A)] =
H (A)(1 � H (A))

� + 1
(2.68)

so that the expected value ofG is the expected value ofH , and samples
from G concentrate around its mean as � gets larger. Figure 2-3 de-
picts the Dirichlet-distributed marginals of the Dirichlet Process and
Figure 2-2 depicts

Figure 2-2: Visualizing unique draws
from the Dirichlet Process, G ⇠

DP(�,H ) for base measure H = N(0, 1)
and varying � . Larger � cause draws to
concentrate on base measure H . Each
unique draw is a line with height pro-
portional to �k in Equation 2.76.

G ⇠ DP (�,H ) � = (�1, . . . ,�N ) ⇠ G (2.69)

then the posterior on G is,

p(G | �1, . . . ,�N ) = DP

 
� + N ,

�

� + N
H +

1
� + N

N’
n=1

��n

!
(2.70)

where ��n is the Dirac delta function, which can be interpreted as a
distribution with unit mass at�n . The base measure of the DP posterior
interpolates between the base measure H weighted by �/(� + N ) and
the empirical distribution of observations � weighted by 1/(� + N ).
Clearly, the Dirichlet Process is conjugate with itself.

The generative process in Equation 2.69 is purely descriptive. It
cannot be simulated so straightforwardly becauseG, although discrete,
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Figure 2-3: Visualizing marginals of the Dirichlet Process, G ⇠ DP(�,H ) for base
measure H = N(0, 1) with CDF �(x) =

Ø x
�1

N(x | 0, 1) and any arbitrary partitioning
A1, . . . ,AK of � = R. The proportion of atoms in distributionG that are contained in
region Ak is Dirichlet-distributed with corresponding parameter �H (Ak ).

contains an in�nite number of atoms. Several constructions exist that
enablemanipulations of theDirichlet Process, however. The Blackwell-
MacQueenUrn Scheme [27] derives the predictive distributionp(�N+1 |
�1:N ) =

Ø
G p(�N+1 | G) p(G | �1, . . .�N ) to be,

�N+1 | �1:N ⇠
�

� + N
H +

1
� + N

N’
n=1

��n (2.71)

which can be easily sampled from: with probability 1
�+N draw from

the discrete distribution with atoms at�1, . . . ,�N , and with probability
�

�+N draw a new atom fromH with parameters �. For N large enough,
there will be repeated draws so that �i = �j for some i , j. This forms
the basis for using the Dirichlet Process as a prior for nonparametric
mixture models; draws that are repeated many times are interpreted
as clusters with signi�cant weight. See Chapter 2.4 for more discus-
sion. Note also that the posterior base measure in Equation 2.70 and
the predictive distribution for the (N + 1)th observation are the same
distribution. Thus, G cannot be sampled, but it does not need to be if
we are actually interested in reasoning over its posterior or on obser-
vations �.

So far we have described properties of the Dirichlet Process, but it
may be that no distribution exists which satis�es them. Using Equa-
tion 2.71, it can be shown that observations � are in�nitely exchange-
able,19 in which case by de Finetti’s theorem [52] that there exists a 19 Random sequence � is in�nitely ex-

changeable if p(�) = p(� (�)) where
� (�) denotes any permutation of a �nite
number of terms in �.

prior onG such that the sequence of observations� are iid draws. That
prior is the Dirichlet Process.

In this work, the Dirichlet Process is used as a prior distribution
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on in�nite mixture models, notably for parts modeling (3.4) and track-
ing (5.3.1). Additional treatment is given in Chapter 2.4 and a more
thorough introduction is given by [192].

2.4 Nonparametric Mixtures

Mixture models can be interpreted as inferring group-level properties
from population-level observations.20 One example of group/popula- 20 Another common use of mixture

models is density estimation.tion decompositions used in this work is time-varying point clouds of a
moving object (population) and the articulated motion of that object’s
unknown parts (groups). Another example is video frames showing
multiple objects in motion over time (population), the motion of in-
dividual objects (group), and the parts decomposition of each object
(sub-groups). Throughout this dissertation, groups, clusters, and com-
ponents are used interchangeably.

2.4.1 Finite Mixtures

The simplest Bayesian mixture models are �nite, meaning that they
have a pre-determined number of groups, K . They can be described by
the following generative model,

� ⇠ Dir (� | �) �k ⇠ H (�k | �) (2.72)
zn ⇠ Cat (zn | � ) �n ⇠ F

�
�n | �zn

�
(2.73)

whereH is a prior distribution on group parameters with hyperparam-
eters � and F is some observation model with group parameters �k .
Indices n = 1, . . . ,N index observations and their associations while
k = 1, . . . ,K index groups and their parameters. One inference prob-
lem is to infer the joint distribution of mixture weights � = �1, . . . , �K ,
associations z = (z1, . . . , zN ), and cluster parameters � = (�1, . . . , �K )
given observations � = (�1, . . . ,�N ) and hyperparameters �,�. An
equivalent generative model that is commonly expressed in the litera-
ture and can be the basis for confusion is,

� ⇠ Dir (� | �) �n ⇠ G �n ⇠ F (�n | �n) (2.74)

whereG is a discrete distribution with k = 1, . . . ,K point masses, each
centered at ��k withweight �k where �k is sampled as in Equation 2.72.
In this formulation, the associations are implicit and would typically
be instantiated to perform inference. These two models can be repre-
sented by the graphical models in Figure 2-4.

A.
zn⇡↵ yn ✓

⇤
k �

N 1

B.
yn ✓n G

↵

H

N

Figure 2-4: Two equivalent mixture
model representations: A. emphasizes
the associations zn while B. emphasizes
the base measure H .

2.4.2 Finite Mixture Inference

The posterior distribution,

p(� , z, µ | �) (2.75)
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cannot be sampled from analytically, nor does an analytic formula ex-
ist for a MAP estimate. However, MAP estimation can still be itera-
tively performed using the Expectation-Maximization (EM) algorithm
[50, 221, 17], which separates variables into two groups: parameters
and missing data. EM alternates between inferring the posterior of
the missing data (z | �, � above) and computing point estimates for
the parameters (� , � | �, z,�,� above). EM is a special case of varia-
tional Bayes approximate inference [103, 95, 75, 92] where parameter
approximating distributions are point masses and the missing distri-
butions are unconstrained [73]. More generally, exact inference can
be performed using Gibbs Sampling (Chapter 2.2), which is particu-
larly simple when F ,H are conjugate (as when F is Gaussian and H
is Normal-Inverse-Wishart). We will discuss sampling-based inference
after covering nonparametric mixture models.

2.4.3 Mixture Models of Unknown Size

The number of groups K is not always known and it may not always
be reasonable to assume that there are a �xed number of groups. One
approach to reason overK is to separately perform inference over a set
of �nite mixture models, each with di�ering K 2 K . Models can then
be compared using Bayes factors (if the evidencep(�) can be estimated)
or by approximate measures like the Bayesian Information Criterion
(BIC) [179]. Another approach is to place a prior on the number of com-
ponents and perform RJMCMC inference (Chapter 2.2) so that model
selection is built into posterior inference. Any prior with support on
Z+, such as the Uniform or Poisson distributions—can be used, but ex-
ploration of latent spaces with variable dimension remains a challeng-
ing problem when no special structure can be assumed [137].

Another approach to mixture modeling with an unknown number
of components, used extensively in this dissertation, is to employ a
Dirichlet Process prior on group parameters. In Chapter 2.3, we showed
the Blackwell-MacQueen Urn construction, which derived the predic-
tive distribution of observations from aDirichlet Process. Observe from
Equation 2.71 that there will be draws from the base measure with
the same value, which holds even if H is continuous. Moreover, when
drawing the (N + 1)th-observation, the probability of drawing a non-
unique value is proportional to the number of times that value has al-
ready been drawn, N /(� +N ), so that a small number of unique draws
explain most of the observations as N grows. This motivates the stick-
breaking construction [182] of the Dirichlet Process, sketched below.

LetH be any distribution with parameters � and let � 2 R+. De�ne
� = {�k }1k=1 where �k ⇠ Beta (1,�). Then, we say,

� ⇠ GEM(�) i� �k = �k

k�1÷
i=1

(1 � �k ) (2.76)

for all k = 1, . . . ,1. GEM stands for Gri�fths, Engen, and McCloskey;
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it’s history is discussed in [164]. Notably, it is a common notationwhen
working with Dirichlet Processes. The stick-breaking construction of
the Dirichlet Process shows that if,

� ⇠ GEM (�) � ⇤k ⇠ H
�
� ⇤k | �

�
G =

1’
k=1

�k�� ⇤k (2.77)

then G ⇠ DP (�,H ). The � ⇤k are unique draws from base measure H .
The number of times they have repeatedly been drawn is proportional
to �k . With this construction, it is straightforward to adopt the Dirich-
let Process as a nonparametric prior on group parameters in an in�nite
mixture model. For n = 1, . . . ,N and k = 1, . . . ,1,

� ⇠ GEM (�) � ⇤k ⇠ H
�
� ⇤k | �

�
(2.78)

zn ⇠ � �n ⇠ F
�
�n | �zn

�
(2.79)

which can equivalently be expressed as,

� ⇠ GEM (�) �n ⇠ G �n ⇠ F (�n | �n) (2.80)

where G ⇠ DP (�,H ). These de�nitions closely correspond to Equa-
tions 2.72–2.74 and they also have the same graphical models, except
that K is replaced with 1. The existence of repeated draws is often
referred to as the clustering property of the Dirichlet Process because
they are what enable the DP to be a prior over in�nite mixture models.
Mixture models with a Dirichlet Process prior are often called in�nite
mixture models or Dirichlet Process Mixture Models (DPMM).

DPMM Inferencewould be intractable if an in�nite number of group
parameters � ⇤k and mixture weights �k had to represented but, like ob-
servations from a Dirichlet Process sample, there are techniques that
can reason exactly over an in�nite number of items using only �nite
representations. We discuss these next.

2.4.4 Inference for Dirichlet Process Mixture Models

Early approaches to DPMM inference were Gibbs samplers that either
approximated an in�nite number of atoms by �nite truncation, rely-
ing on the Dirichlet marginals of the DP prior as well as well as the
property that the number of unique draws grows logarithmically with
observed data (conditional methods), or they utilized the DP predic-
tive distribution (Equation 2.71) along with a conjugate prior on group
parameters [56, 127, 94] (marginal methods). In marginal approaches,
mixture weights and group parameters are marginalized out in closed
form, leaving a stationary distribution that consists of associations z,
which are �nite. Gibbs updates have the form,

p (zn = k | z�n,�,�) / p(zn = k | z�n,�) p(�n | ��n, z,�) (2.81)
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where the �rst term is a posterior predictive on associations,

p(zn = k | z�n,�) =

(Nk\n
N+� if Nk\n > 0
�

N+� if Nk\n = 0
(2.82)

which is of the same form as the DP predictive distribution (Equa-
tion 2.71) where Nk\n is the count of observations associated to group
k not including observation n. The condition Nk\n = 0 handles the
case that the observation is explained by one of the (in�nite) groups
that does not yet have associations. Let Yk\n = {�i : zi = k , 1  i 
N , i , n}. Then, the second term is a posterior predictive for observa-
tion �n conditioned on all observations,

p(�n | ��n, z,�) = p(�n | Yk\n,�) (2.83)

=

π
� ⇤k

F (�n | � ⇤k ) H (� ⇤k | Yk\n,�) (2.84)

which has closed form for F ,H conjugate, and is simply the prior pre-
dictive distribution if Yk\n = ;, in which case Nk\n = 0. The sampler
proceeds by iteratively sampling each association zn in a randomized
order, instantiating a new association label anytime zn is assigned to
what was previously an empty cluster.

Exact samplers have been devised for the DPMM when conjugacy
is not available, including retrospective sampling [156], slice sampling
and auxiliary variable methods [209, 105, 143] and RJMCMC [79, 96,
42]. Approximate samplers include using Monte Carlo estimates of the
prior and posterior predictives [214] and variational inference [28].

2.4.5 Identi�ability

A challenge with sampling-based inference in mixture models is iden-
ti�ability. In particular, p(� | � , z) = p (� | � (� ),� (z))where � (� ) is any
permutation of �1, . . . , �K and � (z) is the corresponding permutations
on association indices k in zn = k for alln = 1, . . . ,N . In words, groups
can be permuted with no change in the likelihood. Figure 2-5 depicts
this graphically. This induces K ! modes into the posterior and its pos-
sible that two distinct posterior samples come from separate modes,
meaning that their group parameters (and association labels) are per-
muted and so not directly comparable. This problem does not arise
in EM or variational Bayes because, as optimization approaches, they
lock onto a single mode.21 Given a set of posterior samples from a mix- 21 Use of the output of multiple opti-

mizations with di�erent initializations
can also cause identi�ability problems
in mixture model inference.

turemodel, there are several approaches to identifying groups between
samples: the simplest is to establish an ordering on group parameters
post-hoc by relabeling the groups in ascending order of theirD dimen-
sional location parameters (assuming they have location parameters,
as when the groups are Gaussian-distributed). Use of non-symmetric
priors can also alleviate the problem when they can meaningfully be
used [97]. Alternatively, a mapping can be computed between group
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parameters by de�ning a suitable matching objective [38, 139].

Figure 2-5: Mixture models likelihoods
(and hence, posteriors) are not invariant
to label permutations. The above sam-
ples have the same likelihood and pos-
terior probability.

2.5 State Space Models

State space models are used to reason about time-evolving data. Let
there be t = 1, . . . ,T discrete timesteps. At time t , there are obser-
vations �t and latent variables xt . Latent variables evolve from time
t to t + 1 according to dynamics f , and observations �t are observed
through observation model h. Both f ,h typically include random in-
novation so that a common formulation is,

xt = f (xt�1,qt ) qt
iid
⇠ p(qt ) (2.85)

�t = h(xt , rt ) rt
iid
⇠ p(rt ) (2.86)

where p(qt ) is some distribution on dynamics noise and p(rt ) is some
distribution on observation noise. If the latent space is discrete, this
model is commonly called a Hidden Markov Model (HMM). If the la-
tent state is continuous, f ,h are linear, and p(qt ),p(rt ) are zero-mean
Gaussians, then it is commonly called a linear dynamical system (LDS).
The functional speci�cation of Equations 2.85–2.86 can be written in
a the following probabilistic form for an LDS,

p(xt | xt�1) = N (xt | Fxt�1,Q) (2.87)
p(�t | xt ) = N (�t | Hxt ,R) (2.88)

where xt 2 Rdx ,�t 2 Rd� , Q 2 Rdx⇥dx is the dynamics noise covari-
ance,R 2 Rd�⇥d� is the observation noise covariance, F 2 Rdx⇥dx is the
linear dynamics represented as a matrix, and H 2 Rd�⇥dx is the linear
observation model represented as a matrix. This system depicts a or-
der M = 1 Markov model for latent dynamics because the latent state
only depends on the previous time’s latent state. Higher-order M > 1
dependencies can be incorporated but are equivalently represented by
a �rst-order model whose latent state and dynamics is augmented to
account for the previousM states.

The models used in this dissertation have mixed continuous and
discrete latent latent spaces, so the general term dynamical system is
used to refer to anymodel that can be speci�ed by Equations 2.85–2.86.
These can, in general, be depicted by the graphical model in Figure 2-6.

x1 x2 · · · xT

y1 y2 yT

Figure 2-6: Graphical model of a dynam-
ical system for times t = 1, . . . ,T . La-
tent states xt evolve with dynamics f
and measurements �t are observed ac-
cording to h(xt ).

The dynamics and observation models can take many forms. A
form widely used in tracking applications is the random acceleration
model where dx = 2d� and,

F =

✓
I � I
0 I

◆
H =

�
I 0

�
Q =

✓
0 0
0 q

◆
(2.89)

where I , 0 2 Rd� are block identity or zeromatrices, respectively, � > 0
indicates the time di�erence between discrete timesteps (usually � =
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1), and q 2 d†. The latent state is interpreted as a collection of position
values followed by a collection of velocity values and the observed
state is simply the projection of the latent position values. Innovations
Q occur only on velocity, hence the name random acceleration. More
complicated dynamics can be modeled (such as for estimating bearing
from radar observations), see [122] for a survey.

2.5.1 Filtering and Smoothing

Perhaps the most common task in dynamical models is to estimate,

p(xt | �1:t ) / p(�t | xt ) p(xt | �1:t�1) (2.90)

= p(�t | xt )

π
xt�1

p(xt | xt�1) p(xt�1 | �1:t�1) (2.91)

which is the �lter distribution of xt conditioned on all data observed up
to time t . The predictive distribution p(xt | �1:t�1) is de�ned in terms
of p(xt�1 | �1:t�1), which is the �lter distribution at t � 1; hence, the
�lter can be computed in recursive fashion starting from t = 1. The
integral in Equation 2.91 is s special case of the Chapman-Kolmogorov
equation.22 The process of recursively estimating xt | �1:t for all t is 22 In a discrete setting, Chapman-

Kolmogorov gives the probability of
reaching state j from state i in L steps.
Here, L = 1.

called �ltering. It can be exactly computed in closed-form when the
latent space is �nite and discrete with complexity O(Td2x ), as well as
when there are linear Gaussian dynamics with complexity O(Td2xd

3
� ).

Filtering in a linear Gaussian system is called Kalman Filtering [106].
Filtering is widely used in state estimation problems that require real-
time performance.

More accurate state estimates can be made if realtime performance
isn’t required by incorporating not future as well as past information
into the estimate of xt . In these batch settings, all data � = �1:T are
observed before inference. The smoothing distribution,

p(xt | �1:T ) =

π
xt+1

p(xt | �1:T , xt+1) p(xt+1 | �1:T ) (2.92)

=

π
xt+1

p(xt | �1:t ) p(xt+1 | �1:T ) (2.93)

can be estimated, where the �rst term in Equation 2.93 is the �lter
distribution (Equation 2.91) and the second term is the smoothing dis-
tribution at time t + 1. This can be computed by a �rst forward pass
that computes and stores the �lter distributions p(xt | �1:t ) for all t ,
then, in a second backwards pass, recursively computes the smooth-
ing (distribution Equation 2.93), which can be accomplished in closed
form for HMMs and linear Gaussian models.

2.5.2 Joint Sampling

The �lter and smoothing distributions reason over themarginal states
xt . Independent samples from each of the T marginals, xt ⇠ �1:T , can
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Figure 2-7: Marginal (�ltered, smoothed) compared to joint state estimates.

be combined, but they may be jointly improbable or even impossible in
some models. When dependence matters, inference can be performed
on the joint distribution,

p(x1:T | �1:T ) =
T÷
t=1

p(xt | xt+1:T ,�1:T ) (2.94)

=

T÷
t=1

p(xt | xt+1,�1:t ) (2.95)

=

T÷
t=1

p(xt | �1:t ) p(xt+1 | xt ,�1:t )

p(xt+1 | �1:t )
(2.96)

=

T÷
t=1

p(xt | �1:t ) p(xt+1 | xt )

p(xt+1 | �1:t )
(2.97)

where the RHS in Equation 2.94 follows from the product rule (Equa-
tion 2.4), the third line follows from Bayes rule (Equation 2.4), and the
second and fourth lines simplify based on conditional independence.
The denominator p(xt+1 | �1:t ) is another instance of the Chapman-
Kolmogorov equation, and is constant due to conditioning on xt+1 in
Equation 2.95. Figure 2-7 distinguishes �ltered, smoothed, and joint es-
timates. This work emphasizes sampling from a joint posterior over all
latent variables; hence, joint state estimates are favored over �ltered or
smoothed estimates.

Joint samples can be drawn using Forward-Filtering Backward Sam-
pling (FFBS) by�rst computing and storing the�lter distribution (Equa-
tion 2.91) over all times t , and then recursively sampling joint states
starting from timeT and working backwards. Like smoothing, this can
be performed analytically for HMMs and for linear Gaussian systems.

The �lter distribution cannot typically be represented in analytic
form when there are nonlinear dynamics. In these cases, there are
many approximate inference approaches that can be used to estimate
the�lter or smoothing distributions. These include the ExtendedKalman
Filter [201], Unscented Kalman Filter [211] and Particle Filter [53].

Joint samples can be drawn using Gibbs sampling of each condi-
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tional, though surprisingly I show in Appendix A.1 that Gibbs sam-
pling is not ergodic for the common case of a linear Gaussian system
with random acceleration dynamics. If the whole state space is contin-
uous, then joint samples can be drawn usingHMC or NUTS. [9] proved
that unbiased estimates of the sampled density could be used within
MCMCproposals and the stationary distributionwould bemaintained.
This led to a class of methods that use particle methods as proposals
within MCMC, including Particle MCMC/Gibbs [10], and their exten-
sions [124].

2.6 Lie Groups

In what follows, operations and properties of Matrix Lie groups that
are necessary for probabilistic reasoning are covered. See [82] for a
thorough introduction toMatrix Lie groups that does not require back-
ground in manifolds, [118] for a general treatment of manifolds in-
cluding Lie groups, [43, 4] for numerical methods on Lie groups and
manifolds, and [55] for an accessible tutorial on Lie groups.

A Lie groupG is a continuous space equipped with a binary oper-
ator that satis�es closure, associativity, existence of identity, and exis-
tence of an inverse. A collection of bijective maps called charts,

{(Ul , �l )}
L
l=1 �l : Ul ! R

K Ul ⇢ G G =
Lÿ
l=1

Ul (2.98)

can be de�ned so that the coordinates of overlapping charts i, j are dif-
ferentiable with respect to the coordinates of all other charts k , making
G a di�erentiable manifold in addition to having group structure.

This work uses Matrix Lie groups SO(D) and SE(D), the groups of
proper rotations and rigid transformations in D dimensions, respec-
tively. Elements of these groups can be represented as,

SO(D) =
�
R 2 RD⇥D : |R | = 1,R>R = RR> = I

 
(2.99)

SE(D) =
�
(R,d) : R 2 SO(D), d 2 RD

 
(2.100)

where |R | is the determinant of matrix R and I is the D-dimensional
identity matrix. Elements of SE(D) can additionally be represented as
block matrices,

SE(D) =
⇢ ✓

R d
0 1

◆
: R 2 SO(D),d 2 RD

�
(2.101)

where 0 2 R1⇥D and 1 2 R1⇥1. The group operation for any Matrix
Lie group G is matrix multiplication so that for b, c 2 G we have bc 2
G and cb 2 G, but bc , cb. Elements of G can be interpreted as a
basis, also called a frame of reference, so that bc acts as a change of
basis. Appendix A.5 expands on this interpretation since it is easily
misunderstood.
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Elements ofG do not form a vector space, nor do are they equipped
with a distance metric. This precludes the direct use of probability dis-
tributions. One can straightforwardly place independent distributions
on each matrix element or on the vectorization of the matrix represen-
tation of each element, but pathologies quickly arise: sampled values
will no longer be in G and likelihoods do not correspond with human
intuition of closeness.

2.6.1 Lie Algebra and Tangent Space

Reasoning can instead be performed in a space de�ned locally about
the group’s identity element using the Lie group logarithm map,

logG : G ! g logG b =
1’
k=1

(�1)k+1

k
(b � I )k (2.102)

which is the standardmatrix logarithm and converges for all Lie groups
considered in this work.23 The space g is called the Lie algebra asso- 23 The Lie group logarithm map logG b

converges whenever | |b � I | |F  1.ciated with Lie group G. Elements of G and g can be represented by
matrices with shared dimension RM⇥M but di�erent structure. There
is a bijective mapping from the matrix representation of elements of g
to a vector representation in RK butK , M in general. The Lie algebra
g forms a K-dimensional vector space and has a standard set of basis
vectors G1, . . . ,GK , also called generators, which can be represented
by elements of RM⇥M . We use the matrix and vector representations
of elements of g interchangeably throughout this work to reduce no-
tational overhead.

Elements in g can be mapped back to G through the Lie group ex-
ponential map,

expG : g! G expG c =
1’
k=0

1
k!
ck (2.103)

which is the standard matrix exponential and converges for all Lie al-
gebras considered in this work. We would like to reason locally in a
vector space de�ned about an arbitrary element µ 2 G so that we can
de�ne a distance metric onG. Existence of an inverse makes this pos-
sible since µ�1µ = I . De�ne the left-invariant Riemannian logarithm
map and left-invariant Riemannian exponential map as:

Log : G ⇥G ! g Logµb = logG (µ
�1b) (2.104)

Exp : G ⇥ g! G Expµ� = µ expG � (2.105)

We can alternatively de�ne the right-invariant Riemannian logarithm
and exponential maps:

gLogµb = logG (b µ�1) gExpµ� = expG (�) µ (2.106)

In some Lie groupsG, left-invariance and right-invariancewill be equiv-
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alent so that they are called bi-invariant. In the context of SE(3), the
choice of left- or right-invariance matters a great deal because it turns
out that SE(D) has no bi-invariant metric [157]. The consequence of
this is that a distance metric can be de�ned that is consistent when
measured from an observer’s point of view (left-invariant), or consis-
tentwhenmeasured from the body frame of reference (right-invariant),
but a distance metric cannot be de�ned which is consistent in both
contexts. The applications in this work reason about the articulated
motion of a moving object from the point of view of a world frame of
reference; thus, we choose left-invariance.

For left-invariant Riemannian log and exponential maps, the fol-
lowing holds locally about element µ 2 G,

Logµ
⇣
Expµ�

⌘
= logG

�
µ�1µexpG�

�
= � (2.107)

Expµ
⇣
Logµb

⌘
= µ expG

�
logG

�
µ�1b

� �
= µµ�1b = b (2.108)

so that Log and Exp can be locally treated as inverses of one another.
Parameterizing by µ 2 G, we say,

Logµ : G ! TµG (2.109)

Expµ : TµG ! G (2.110)

whereTµG, is the tangent space of element µ 2 G, which is isomorphic
with the Lie algebra g so thatTµG is also a vector space, with the same
basis vectors, as g.

2.6.2 Riemannian Metrics and Distributions

We can de�ne inner products on the tangent space. For µ 2 G and
u,� 2 TµG, any inner product of the form,

hu,�iµ = u
>Q� Q =

✓
A B
B> C

◆
2 P(K) (2.111)

is a Riemannian metric, which induces a distance metric on G,

D(µ,b) =

r⇣
Logµb

⌘>
Q

⇣
Logµb

⌘
(2.112)

In thiswork, we use the scale-dependent left-invariantmetric on SE(D).
For b, µ 2 SE(D) with matrix representations,

µ =

✓
Rµ dµ
0 1

◆
b =

✓
Rb db
0 1

◆
(2.113)

the scale-dependent left-invariant metric on SE(D) is,

D(µ,b) =
q
a | |LogRµRb | |

2 + e | |dµ � db | |2 (2.114)

48



for a, e 2 R+ chosen to trade o� di�erences in rotations with di�er-
ences in translation distance.

Given a metric, we can de�ne standard statistical notions included
expected value and covariance. For x1, . . . xN 2 G,

E[x1, . . . , xN ] = argmin
µ 2G

K’
k=1

D(µ, xk )
2 (2.115)

Cov(x1, . . . , xN ) =
1
N

K’
k=1

⇣
Logµxk

⌘
Q

⇣
Logµxk

⌘>
(2.116)

which have familiar forms to their analogues in Euclidean space. One
distinction is that the expected value may have multiple local minima.
When the solution µ 2 G to Equation 2.115 is a local minima, it is called
a Karcher mean.When it is a global minima, it is called a Fréchet mean.

Continuous location-scale probability distributions on Lie groupG
can be straightforwardly de�ned once Riemannian log and exponential
maps are chosen.24 Location parameters are de�ned on G and scale 24 Comment about other retractions, in-

cluding pseudo-log.parameters are de�ned in TµG. The distribution is given support on
G by mapping its argument to TµG. The left-invariant concentrated
Gaussian is de�ned in this way. Let G be a Matrix Lie group with K
degrees of freedom so that x, µ 2 G can be represented by an element
of RM⇥M and elements of g (equivalently, TµG) can be represented by
matrices RM⇥M or vectors RK . Then the left-invariant concentrated
Gaussian is,

NL (x | µ, �) = N
⇣
Logµx | 0, �

⌘
(2.117)

where � 2 RK⇥K , 0 2 RK .
Following [55], I provide the degrees of freedom K , the square di-

mension of the matrix representations of group and algebra elements
M , the Lie algebra generators G1, . . . ,GK and the Lie group log and
exponential maps for groups used in this work.

2.6.3 Group Forms

SO(2) The group of proper rotations in 2D (K=1, M=2). Elements b 2
G are 2⇥2 rotation matrices which rotate a point on the circle. The Lie
algebra has one generator:

G1 =

✓
0 �1
1 0

◆
(2.118)

For � = �G1 2 g where � 2 R, the log and exponential maps are,

b = expG � =

✓
cos� �sin�
sin� cos�

◆
(2.119)

� = logG b = arctan(b21,b11) G1 (2.120)
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SE(2) The group of rigid transformations in 2D (K = 3,M = 3). El-
ements b 2 G rotate then translate 2D homogeneous points. The Lie
algebra has three generators,

G1 =
©≠
´
0 0 1
0 0 0
0 0 0

™Æ
¨

G2 =
©≠
´
0 0 0
0 0 1
0 0 0

™Æ
¨

(2.121)

G3 =
©≠
´
0 �1 0
1 0 0
0 0 0

™Æ
¨

(2.122)

so that:
� = xG1 + �G2 + �G3 =

✓
�G3 u
0 0

◆
2 g (2.123)

whereu = (x,�). Note thatG3 is the same generator as is used in SO(2).
Let G 0 = SO(2) and denote b = expG � as,

b =

✓
Rb db
0 1

◆
2 G (2.124)

where Rb 2 SO(2) is a 2⇥2 rotationmatrix,db 2 R2, 0 2 R1⇥2, 1 2 R1⇥1.
Then, the the log and exponential maps have the form:

b = expG � =

✓
expG0(�G3) Vu

0 1

◆
(2.125)

� = logG b =

✓
logG0 Rb V �1 db

0 1

◆
(2.126)

V �1 =
1

A2 + B2

✓
A B
�B A

◆
(2.127)

A = sin(� )/� B = (1 � cos(� ))/� (2.128)

To compute the log map for SE(2), �rst compute the SO(2) log map
for rotation component Rb , then compute V and apply it as a linear
operator to db .

SO(3) The group of proper rotations in 3D (K = 3,M = 3). Elements
b 2 G rotate 3D points on the sphere. The Lie algebra has three gener-
ators,

G1 =
©≠
´
0 0 0
0 0 �1
0 1 0

™Æ
¨

G2 =
©≠
´

0 0 1
0 0 0
�1 0 0

™Æ
¨

(2.129)

G3 =
©≠
´
0 �1 0
1 0 0
0 0 0

™Æ
¨

(2.130)
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so that � =
Õ3

k=1 �kGk 2 g. Let � = (�1, �2, �3)> and let � = +
p
�>� .

Then,

b = expG � = I +
sin �
�

� +
1 � cos �

� 2 �2 (2.131)

� = logG b =
�

2 sin �
(b � b>) for � = arccos

✓
tr(b) � 1

2

◆
(2.132)

SE(3) The group of rigid transformations in 3D (K = 6,M = 4). El-
ements b 2 G rotate then translate 3D homogeneous points. The Lie
algebra has six generators,

G1 =
©≠≠≠
´

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

™ÆÆÆ
¨

G2 =
©≠≠≠
´

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

™ÆÆÆ
¨

(2.133)

G3 =
©≠≠≠
´

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

™ÆÆÆ
¨

G4 =
©≠≠≠
´

0 0 0 0
0 0 �1 0
0 1 0 0
0 0 0 0

™ÆÆÆ
¨

(2.134)

G5 =
©≠≠≠
´

0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

™ÆÆÆ
¨

G6 =
©≠≠≠
´

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

™ÆÆÆ
¨

(2.135)

so that for x,�, z, �1, �2, �3 2 R,

� = xG1 + �G2 + zG3 + �1G4 + �2G5 + �3G6 2 g (2.136)

Let u = (u1,u2,u3)>, � = (�1, �2, �3)> and G 0 = SO(3). Then,

b = expG � =

✓
Rb db
0 1

◆
(2.137)

� = logG b =

✓
logG0Rb V �1db

0 0

◆
(2.138)

Rb = I +A�⇥ + B�
2
⇥ (2.139)

db = Vu (2.140)

V �1 = I �
1
2
�⇥ +

1
�2

✓
1 �

A

2B

◆
� 2⇥ (2.141)

A = sin(�)/� B = (1 � cos(�))/� (2.142)

�⇥ =
6’

k=4

�kGk � =
p

�>� (2.143)

To compute the log map for SE(3), �rst compute the SO(3) log map
for rotation component Rb , then compute V and apply it as a linear
operator to db .
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2.7 Bayesian Experiment Design

Bayesian Experiment Design (BED) is an approach to decision mak-
ing where there is a generative model for what would occur once the
decision has been made. With this model, the results of possible exper-
iments can be reasoned over without actually performing the exper-
iment, such as by marginalizing over or sampling possible outcomes.
An experiment can then be chosen based on a desirable criteria.

In particular, design d 2 D is chosen and observations a 2 A

are observed. The space D is a space of possible experiments to run—
including any parameters—and the space A is the space of possible
experimental observations or results. The design is chosen based on
the optimization of some utility function. Designs can be sequentially
chosen in a greedy manner so that at round l = 1, . . . , L, design dl is
chosen and observations al are observed. Greedy selection does not
yield optimal utility over all L rounds in general, but is more tractable.
In this work, the space of designsD is discrete and the utility function
considered is mutual information so that at the l th round, the observa-
tion model for design d is,

pd (al | x,�,Dl�1) (2.144)

where Dl�1 = {al ,dl }l�1i=1 is the set of previous decisions and outcomes.
The utility function is mutual information between random variable al
and latent state x conditioned on observations� and decision/outcome
pairs Dl�1,

Id (al ;x | �,Dl�1) = E


log

pd (al , x | �,Dl�1)

pd (al | �,Dl�1) pd (x | �,Dl�1)

�
(2.145)

= E


log

pd (al | x,�,Dl�1)

pd (al | �,Dl�1)

�
(2.146)

= E [� logpd (al | �,Dl�1)]� (2.147)
E [� logpd (al | x,�,Dl�1)] (2.148)

which is a di�erence of entropies that quanti�es reduction in posterior
uncertainty. In the l th round, the design d = dl is chosen that corre-
sponds to,

a⇤l = argmax
al

Id (al ;x | �,Dl�1) (2.149)

and Dl = Dl�1 [ (d⇤l ,a
⇤

l ). Analytic solutions are often not available for
Equation 2.148. This work uses sampling-based Monte Carlo estimates
for approximation. For a review of Bayesian Experiment Design with
emphasis on tractable, linear designs, see [40]. Recent sampling-based
or variational approaches include [231, 64, 154].
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Chapter 3

Nonparametric Parts
Modeling with Lie Group
Dynamics

3.1 Approach
3.2 Contributions
3.3 A Naive Parts Model
3.4 Nonparametric Parts Model
3.5 Inference
3.6 Evaluation
3.7 Related Works
3.8 Conclusion

The world is full of moving objects comprised of articulating parts. Ex-
amples include the arms, legs, and tails of animals. Despite the wide
range and complexity of such objects, humans have a remarkable abil-
ity to accurately discern both the number of articulating parts and their
relation to the whole with few observations [148]. I seek to develop
reasoning methods and algorithms that mimic this ability.

This work builds an unsupervised, articulated parts model for a
general object simply by observing that object in motion. It eschews
the need for labeled training data. Not all objects have the same num-
ber of parts, nor are their parts of a common shape, size, or appear-
ance. Hence, no advance speci�cation of the number of parts can be
designated and assumptions on physical part properties must be lim-
ited. Object motion can be sensed in many ways including video or
depth cameras as well as 3D capture setups that generate dynamic
point clouds or meshes in a common coordinate system. For maximum
�exibility, the Nonparametrics Parts Model proposed in this chapter
seamlessly supports observation models from diverse sensors in 2D or
3D. Figure 3-1 shows examples of the articulating parts learned from
objects in motion for 2D and 3D data.

Learning an articulated parts model with limited prior knowledge
of the object is principally motivated by the study of animal motion,
which stands to bene�t from methods that infer motion decomposi-
tions. In particular, there is interest in how low-level motion com-
poses to higher-level motion [217], and how those motions can predict
higher-level behavior [7]. Furthermore, whereas humans may natu-
rally segment an object into parts based on motion that is familiar to
them (arms, legs, wings), it is conceivable that part decompositions
which depart from human intuition may make for better descriptions
of, or predictors for, behavior.

Object and partmotion can be described inmanyways. One straight-
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Figure 3-1: The number, rotation, translation, and shape of an object’s parts are learned from a small number of observations
of that object in motion. Motion of the body and parts is parameterized by the Lie group of rigid transformations in 3D or 2D.
Supported data sources include sequences of meshes / point clouds (A, human), depth data (B, marmoset), and 2D images (C,
hand, spider).

forward representation is to describe it as the set of pixels, points or
mesh faces that are associated to each part at each time. This is a thor-
ough description, but is less interpretable by humans than is a descrip-
tion containing the pose of each part at each time. Manifolds provide
a parsimonious representation of the degrees of freedom in a system
and are interpretable owing to their long study [16]. Whereas many
methods learn a manifold on which observations exist [213, 175], this
work instead begin with a representation that employs manifolds that
have well-understood properties. Body and part motion is represented
using SE(D), the Lie group of rotations and translations. SE(D) is ap-
propriate for describing articulated motion because it can describe any
rigid transformation [213].

3.1 Approach

Thiswork develops an unsupervised partsmodel. It assumes that object-
associated observations arrive in batch over all times. Observations
may be in D = 2 or D = 3 dimensions depending on whether they are
pixels from an RGB camera, unprojected depth measurements from an
RGB-D sensor, or XYZ point clouds or meshes from a 3D capture setup.
Input is observed in a world coordinate frame that is aligned with the
sensor. Observations are modeled as being Gaussian-distributed about
the center of one of an unknown number of parts. Observations are
generated in their respective part frames, but observed in a common
world frame. A key inference challenge is to determine appropriate
body and part transformations that meaningfully explain how subsets
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of observations engage in shared transformations.
Articulated object motion is modeled as time-varying body and

part frames represented by elements of SE(D). Body dynamics aremod-
eled as a random walk on SE(D) whereas part dynamics are modeled
as independent, stabilized random walks centered about an unknown
canonical part frame. Canonical parts are distributed about the body
frame according to a concentrated Gaussian distribution on SE(D).
Body and part dynamics have inverse-Wishart [218] distributed noise
covariances that are interpreted as existing in the tangent space of the
previous time’s body or part frame. Conditioned on observations over
all time, Gibbs sampling [74] inference proceeds by iteratively sam-
pling body and part translations and rotations from their respective
full conditional distributions. Body and part transformations are de-
scribed as manifold-valued elements that do not exist in a vector space
whereas their innovations are described as random variables existing
in tangent spaces that do form vector spaces. Hence, it is necessary
to de�ne a Riemannian metric on SE(D) and use the Riemannian log-
arithm and Riemannian exponential maps to compose body or part
transformations with their random innovations.

A Dirichlet Process prior is placed on the part associations of ob-
servations over all time. Doing so enables reasoning over an unknown
number of parts but complicates inference because reasoning occurs
over an in�nite number of currently-uninstantiated parts. Speci�cally,
computing the probability of association for each observation to an
unidenti�ed part requires an integration over all possible rigid trans-
formations that could have generated the observation at that time. This
integral has no analytic form. Instead, it is approximated with a con-
stant derived from Monte Carlo sampling.

Chapter 3.2 summarizes contributions related to the Nonparamet-
ric Parts Model. Chapter 3.3 develops a naive parts model without Lie
group dynamics; it motivates their use and aids intuition for the Non-
parametric Parts Model. Chapter 3.4 develops the Nonparametric Parts
Model and Chapter 3.5 develops inference. Chapter 3.6 provides exper-
imental results and discussion. Finally, Chapter 3.7 provides related
works.

3.2 Contributions

Object motion can be ambiguous from a single view. For example, spi-
der legs observed by a camera from above may be occluded and fore-
shortened, making it unclear whether or not they have crossed. Such
mutually exclusive outcomes can be represented by a distribution on
part motion. Reasoning over distributions on manifolds requires ad-
ditional care when the manifold does not form a vector space. Not
only is the motion of a given part ambiguous, but so too are the num-
ber of parts. Both challenges are addressed by nontrivially combining
Bayesian nonparametricmodels, speci�cally theDirichlet Process [60],
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with distributions on manifolds. The proposed Nonparametric Parts
Model is well-suited to the properties of articulated objects in motion:
parts persist across time, their motion is described by rigid transfor-
mation dynamics, and a distribution is maintained over an unknown
number of parts. Novel Gibbs decompositions of inferring translations
and rotations in posterior distributions on SE(D) with concentrated
Gaussian [213] priors are derived. I show that translation conditionals
have analytic form under a concentrated Gaussian prior and a multi-
variate Gaussian observation model (Chapter 3.5). E�cient, bounded
Slice sampling [145] inference is used for rotation conditionals that is
aware of multimodal structure in the posterior.

NPP is the �rst parts model that can infer an unknown number
of articulating parts in 2D or 3D from a single sensor without requir-
ing a body model a priori or resorting to markers, dyes, annotations,
or sensors being placed on the object. No correspondences between
object observations over time are assumed, nor are observations as-
sumed to be present for each part at all times. I demonstrate that parts
decompositions can be learned from short sequences of object motion
by validating NPP on 2D and 3D sequences containing di�erent ob-
ject types (Chapter 3.6). Additionally, the parts in one data sequence
transfer to other data sequences of the same object type (but di�erent
instance) (Chapter 3.6.5).

In addition to learning a parts decomposition, NPP enables analysis
of part motion by separately inferring body and part contributions to
motion. Observations associated to an object can be segmented over
time based on the integrated motion of their associated part (Chap-
ter 3.6.3). This facilitates understanding by showing, for example, that
the observations corresponding to the legs of a spider experience more
motion relative to its body frame than does the thorax, without ad-
vance knowledge of spider legs or thoraxes. Finally, NPP enables syn-
thesis of novel articulated body and part motion based on parameters
learned from observing the object in motion (Chapter 3.6.4).

3.3 A Naive Parts Model

We begin construction of the Nonparametric Parts Model by �rst de-
veloping our intuition with a naive parts model that has a known num-
ber of parts with linear Gaussian dynamics on RD . Much of the gener-
ative model and challenges we encounter in the naive parts model will
motivate and transfer over to the Nonparametric Parts Model, which
models dynamics on the Lie group of rigid transformations SE(D) and
does not assume a known number of parts.

Let t = 1, . . . ,T index time. A simple random walk for a body
centroid xt 2 RD can be constructed as, for all times t ,

xt ⇠ f (xt�1) = xt�1 + qt qt ⇠ N(0,Q) (3.1)

whereQ is its driving noise covariance. This evolves over time accord-
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Figure 3-2: A random walk on R2 for body xt . See Equation 3.1.
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Figure 3-3: A random walk on R2 for body xt and parts �tk . See Equations 3.2–3.3.

ing to Figure 3-2. We can add k = 1, . . . ,K parts that evolve relative to
the body so that the model is, for all times t and parts k ,

xt ⇠ f (xt�1) = xt�1 + qt qt ⇠ N(0,Q) (3.2)
�tk ⇠ �(�(t�1)k ) = �(t�1)k + stk stk ⇠ N(0, Sk ) (3.3)

where �tk is the k th part’s centroid at time t and Sk is its driving noise
covariance. This system evolves according to Figure 3-3. Observe that
because the parts are speci�ed relative to the body they must be trans-
formed by the body’s centroid to be observed in world coordinates.
The world coordinates for part k at time t are xt + �tk .

A problem with the model in Equations 3.2–3.3 is that parts can
wander arbitrarily far from the body. This is physically implausible
because object parts tend to remain proximate. Instead, we would pre-
fer that they tend to remain proximate. Constraints can be imposed
that enforce nearness, but they would be object-speci�c and compli-
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cate inference. Instead, Appendix A.3 shows how a stabilized random
walk can be constructed so that over all times t it has an expected
value of 0 and an asymptotic, bounded variance equal to its driving
noise variance.

A stabilized randomwalk can be straightforwardly implemented in
the above formulation because the parts are interpreted relative to the
body: design the parts (Equation 3.3) to evolvewith a stabilized random
walk so that they have a suitably small driving noise variance25 and an 25 The driving noise variance should

be small enough that the part does not
wander o� but not so small that the part
cannot move about or cross over other
parts in the body frame.

expected value their expected value equal to zero in part coordinates,
which is the body centroid in world coordinates. Designing in this way
would encourage the object to be compact, with all its parts “folded in”
near its center of mass. Instead, we add a “canonical part” centroid �k
that is some o�set from the body and �xed over all time. Then the part
transformations �tk are reinterpreted as existing in the canonical part
frame so that their zero expected value means that they will stay near
their canonical part centroid in world coordinates. This encourages
parts to have distinct locations but allows them to overlap when there
is supporting evidence. This model is, for all times t and parts k ,

xt ⇠ f (xt�1) = xt�1 + qt qt ⇠ N(0,Q) (3.4)
�k ⇠ N(0,Wk ) (3.5)
�tk ⇠ �(�(t�1)k ) = A �(t�1)k + B stk stk ⇠ N(0, Sk ) (3.6)

whereWk is the covariance of the k th part’s translation from the body
centroid and matrices A,B 2 RD⇥D control the smoothness of the sta-
bilized random walk (with greater smoothness for a ! 1),

A = diag
�p
a, . . . ,

p
a
�

B = diag
⇣p

1 � a, . . . ,
p
1 � a

⌘
(3.7)

Observe from Figure 3-4 that this model stabilizes the parts so that
they do not wander too far from the body. This is a consequence of
their asymptotic covariance being designed to be equal to Sk .

Finally, body and part centroids are not usually observed directly;
instead, indirect observations �t = {�tn}

Nt
n=1 are measured such that

�tn is generated by part k if association ztn = k . The �nal naive parts
model is, for all times t , parts k , and observations n,

xt ⇠ f (xt�1) = xt�1 + qt qt ⇠ N(0,Q) (3.8)
�k ⇠ N(0,Wk ) (3.9)
�tk ⇠ �(�(t�1)k ) = A �(t�1)k + B stk stk ⇠ N(0, Sk ) (3.10)
ztn ⇠ Cat(ztn | � ) (3.11)

�tn ⇠ h(xt ,�k , �(t�1)k )
�ztn=k (3.12)

= xt + �k + �tk + �tn �tn ⇠ N(0, Ek )

where � = (�1, . . . , �K ) are mixture weights that sum to one such that
�k is proportional to the number of observations that part k tends to
generate. Covariance Ek de�nes the typical range in which observa-
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Figure 3-4: A stabilized random walk on R2 for parts �tk . See Equations 3.4–3.6.
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Figure 3-5: A complete naive parts model. See Equations 3.8–3.12.

tions associated to part k are generated. This model is visualized in
Figure 3-5. The naive parts model has the following parameters:

{K,Q, � , {Wk , Sk , Ek }
K
k=1} (3.13)

It captures that parts persist over time, that observations need not be
observed from all parts at all times, that parts do not wander too far
from a typical location near the body, and that parts can have di�erent
typical rates of motion compared to each other and the body.We retain
these properties when building the Nonparametric Parts Model while
also addressing two key limitations of the naive parts model:

1. Parameters must be determined for each observed object, which
would involve a costly grid search or empirical Bayes approach.
The Nonparametric Parts Model instead places prior distribu-
tions on all parameters (Equation 3.13), most notably on the num-
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ber of parts K using a Dirichlet Process.

2. The only valid body and part motions are translations. This fails
to capture articulated motion. The Nonparametric Parts Model
changes the latent space from RD to SE(D), the Lie group of
rigid transformations. The dynamics models f ,� and observa-
tion model h undergo signi�cant changes though their inter-
pretation and algebraic form are remarkably similar to Equa-
tions 3.8–3.12.

Following, we develop the Nonparametric Parts Model.

3.4 Nonparametric Parts Model

Let t = 1, . . . ,T index time,k = 1, . . . ,1 index parts, andn = 1, . . . ,Nt
index observations at time t . Most generally, the Nonparametric Parts
model (Figure 3-6) takes as its sole input observations {�t }Tt=1 where
the t th batch �t = {�tn}

Nt
n=1 contains Nt observations with unknown

correspondence. There is a global (body) dynamic with time-varying
parameters xt and time-�xed parameter Q . There are an unknown
number of components (parts) with time-varying parameters �tk and
time-�xed parameters {�k , Sk , Ek ,Wk }. Stochastic dynamics models
f ,� and stochastic observation model h are, for each t,k,n,

xt ⇠f (xt�1,Q) �tk ⇠ �(�(t�1)k ,�k , Sk ) (3.14)
�tn ⇠ h(xt , �tztn ,�ztn , Eztn ) (3.15)

where ztn = k indicates that observation �tn was generated by com-
ponent k . A prior probability of association is given by the in�nite dis-
crete distribution of stickweights � (for� > 0) implied by the Dirichlet
Process when used as a prior for mixture models:

ztn ⇠ � = p(ztn | � ) � ⇠ GEM(�) = p(� ) (3.16)

The GEM distribution implies a Dirichlet Process prior with concen-
tration � and a base measure whose density is the product of densities
of the component parameters {�tk ,�k , Sk , Ek ,Wk } for a single k and
all times t .

x1

✓1k

x2

✓2k

· · ·

· · ·

xT

✓Tk

y1n y2n yTn

z1n z2n zTn⇡

N1 N2 NT

1

Figure 3-6: Simpli�ed graphical model
for an unknown number of time-
varying parts {�tk }

T ,1
t=1,k=1 coupled by

shared dynamics {xt }Tt=1. Observations
�tn are generated by part k if ztn = k .
Stick weights {�k }

1

k=1 in�uence the
observation counts for each part. Priors
{�,Hx ,H� ,H� ,HS ,HE ,HW ,HQ } and
latent parameters {Q,�k , Sk ,Wk , Ek }
are omitted for clarity.

To specialize for object and parts modeling we must further spec-
ify the domain of random variables {�tn, xt , �tk ,�k , Sk , Ek ,Wk ,Q}, the
form of priors {Hx ,H� ,H� ,HS ,HE,HW ,HQ } and the forms of stochas-
tic dynamics and observation models { f ,�,h}.

3.4.1 Body and Parts

Variable Description
G = SE(D) Lie group
xt 2 G Body frame
�k 2 G Part canonical frame
�tk 2 G Part per-time frame
�tn 2 RD Observation
ztn 2 Z Association
Q 2 P(M) Body driving noise
Wk 2 P(M) Part dispersion
Sk 2 P(M) Part driving noise
Ek 2 P(D) Part observation noise
� > 0 Concentration
t � 1 Time index
k � 1 Part index
n � 1 Observation index
M 2 {3, 6} DoF of G
D 2 {2, 3} Dimension of �tn

Table 3.1: Nonparametric Parts Model
notation.Let G = SE(D) for dimension D 2 {2, 3}. We seek to infer a parts

decomposition of an articulating object by directly observing it in mo-
tion. Speci�cally, we model the inputs �tn 2 RD as being random col-
lections of points sampled within the object as it moves across time.
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Figure 3-7: The frames that comprise an object in the Nonparametric Parts Model at time t . Per-time body frames xt are rigid
transformations from world frameW . Each part k contains a time-�xed canonical part frame �k and a per-time part frame �tk .
�k are a rigid transformation from body frame xt while �tk are a rigid transformation from �k . Using stabilized random walk
dynamics, each per-time part frame �tk is designed to transform smoothly over time but remain near the origin of their respective
canonical part frame �k .

Variable (including no) observations are supported at each time, and
no correspondence between observations is assumed. Diverse inputs
are supported, including foreground pixels of 2D image sequences, un-
projected points from depth sequences, and 3D point clouds sampled
within mesh sequences.

We assume part persistence–an object does not gain or lose parts
over time. We also assume that parts move smoothly through space
but remain close (in an L2 sense) to a common body which also moves
smoothly. The relation between body and part motion can be modeled
in many ways: one naive extreme would be to model them as �oating
bodies with linear dynamics (as we did with the naive parts model),
while the other extreme would be to model them as existing in a skele-
tal network of joints. Linear dynamics fail to capture part articulation
while skeletal networks are overly restrictive.

We take amiddle ground: parts {�tk ,�k , Sk , Ek ,Wk } aremodeled as
�oating bodies that rotate and translate smoothly through space about
a body frame xt 2 G, but whose origins tend to remain near the origin
of a canonical part frame �k 2 G through stabilized random walk dy-
namics. Canonical part frames are close to the body frame and remain
�xed across time but parts also have per-time frames �tk 2 G. Parts
are not �xed in their spatial extent; instead, they have a probabilis-
tic, ellipsoidal shape model governed by Gaussian covariance Ek . Part
dynamics are governed by covariance Sk and body dynamics are gov-
erned by covariance Q . The dispersion of canonical part frames about
the body frame is governed by covarianceWk . Figure 3-7 graphically
depicts how body and part frames compose. Table 3.1 summarizes im-
portant notation.
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3.4.2 Dynamics

Body frames xt and parts evolve independently, but are implicitly cou-
pled through the observationmodel. In particular, the body frame stochas-
tic dynamics model is:

xt ⇠ NL(xt | xt�1,Q) = p(xt | xt�1,Q) (3.17)

Object dynamics are a non-linear random walk on G whose noise co-
variance Q exists in the tangent space about the body frame at the
previous time. Canonical part frames �k are dispersed about the body
frame with covarianceWk ,

�k ⇠ H� = NL(· | I ,Wk ) = p(�k |Wk ) (3.18)

where I 2 G is the identity element (no translation or rotation) and co-
varianceWk can be thought to (implicitly) exist in the tangent space of
xt . Each part has per-time dynamics �tk with driving noise covariance
Sk governed by:

�tk =

 
ExpR�(t�1)k �tk A d�(t�1)k + B mtk

0 1

!
(3.19)

with constants A,B as in Equation 3.7. Exp in Equation 3.19 is the Rie-
mannian exponential for SO(D). �tk 2 so(D) is a vector in the tangent
space ofR�(t�1)k . Part translation driving noisemtk and rotation driving
noise �tk are jointly distributed:

(mtk ,�tk ) ⇠ N (0, Sk ) (3.20)

As discussed in the naive parts model and in Appendix A.3, appropri-
ately chosen coe�cients of matrices A,B (a = 0.95) cause the asymp-
totic covariance of the part translation d�tk to equal the covariance
of translation driving noisemtk . This form enables parts to transform
smoothly, but never too far from their canonical location, and miti-
gated part confusion during inference. Equations 3.19 and 3.20 com-
bine to give the per-time part dynamics,

p(�tk | �(t�1)k , Sk ) (3.21)

which can be evaluated by solving for mtk ,�tk in Equation 3.19 and
evaluating Equation 3.21. Simulation is also straightforward: Sample
mtk ,�tk according to Equation 3.21 and compute the next part accord-
ing to Equation 3.20.

All driving noise covariances are drawn from Inverse-Wishart dis-
tributions, where we note that our model supports arbitrary correla-
tions between translation and rotation for object, canonical part, and
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Coordinate Systems for DP Parts Model
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Figure 3-8: Nonparametric Parts Model generation of observations.. The body frames
x at times t�1 and t , along with the (�xed) canonical part transformations�k and per-
time part transformations �tk for times t � 1 and t . Parts are visualized by color (red,
green, blue). The point p with coordinates in the time t , part k frame of reference has
world coordinates xt�k�tkp. Much of the inference challenge in the Nonparametric
Parts Model is in determining transformations xt ,�k , �tk for all times t,k given that
points points are only observed in world coordinates.

part transformations:

Q ⇠ HQ = IW(·|�Q0,�Q0) = p(Q) (3.22)
Sk ⇠ HS = IW(·|�S0,�S0) = p(Sk ) (3.23)
Wk ⇠ HW = IW(·|�W0,�W0) = p(Wk ) (3.24)

And initial body and part frames are drawn according to:

x1 ⇠ Hx = NL(·|x0, �x ) = p(x1 | x0) (3.25)
�1k ⇠ H� = NL(·|�0, �� ) = p(�1k | �0k ) (3.26)

3.4.3 Observation Model

Input �tn is assumed to be in world coordinate system W , which is
assumed to be aligned with the sensor’s coordinate system (hence,W
has no rotation or translation and is henceforth omitted). Parts gen-
erate observations in their respective part coordinate systems and are
mapped to world coordinates via �tk ,�k and the body frame xt . That
is, part k generates point etn ⇠ N(0, Ek )which is thenmapped to world
coordinates �̃tn = xt�k�tk ẽtn if ztn = k (where (·̃) is a homogeneous
projection of (·)). The transformation is linear in ẽtn allowing straight-
forward mean and variance computations of the homogeneous point
in world coordinate �̃tn , yielding the following observation model,

�̃tn ⇠ N(�̃tn |xt�k�tk 0̃R, xt�k�tk Ẽk�
>

tk�
>

k x
>

t )
�ztn=k (3.27)
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where 0̃R is the homogeneous zero vector in RD and Ẽk is a degenerate
block covariance matrix Ek with a zero row and column (a covariance
in homogeneous coordinates). Without homogeneous coordinates this
is,

�tn ⇠ N (�tn | µtk , �tk )
�ztn=k = p(�tn | xt ,�, �t , ztn) (3.28)

µtk = RxtR�k
�
d�tk + d�k

�
(3.29)

�tk = RxtR�kR�tkEkR
>

�tkR
>

�kR
>

xt (3.30)

The observationmodel is parameterized by state-dependent noise.While
simple, it accommodates image plane observations in 2D, depth obser-
vations in 2.5D and XYZ observations in 3D. Incorporating additional
terms (e.g., appearance) is straightforward, but were not needed for our
purposes. As with most generative models, robustness to missing data
(common for depth sensors) is handled seamlessly. Figure 3-8 visually
depicts the relationship between points generated in part k’s coordi-
nate system at time t and the world coordinates that are observed.

The observation covariance �tk for �tn is some rotation of Ek for
ztn = k due to the composition of body and part frames. Consequently,
Ek is constrained to be diagonal (i.e., axis-aligned) so as to avoid ambi-
guity. While the use of Ek implies a probabilistic, ellipsoid part shape
model, its primary function is to yield robust associations ztn of obser-
vations to parts. Here, we use the following prior:

Ek ⇠ HE = IW(·|�E0,�E0) = p(Ek ) (3.31)

3.5 Inference

The Nonparametric Parts Model is a Dirichlet Process Mixture with a
base measure whose density is,

p(�, �,W , S, E) = (3.32)÷
k

p(Wk ) p(Sk ) p(Ek ) p(�k |Wk )
÷
t
p(�tk | �(t�1)k , Sk )

when evaluated for a single k . Combining the base measure with the
stick-breaking prior on � , the shared body frame dynamics (x,Q), and
the observation model for � yields the joint posterior for the Nonpara-
metric Parts Model,

p(x,�, �,Q,W , S, E, z, � | �) = (3.33)
1
Z

p(�, � ,W , S, E) p(� ) p(Q)÷
t
p(xt | xt�1)

÷
n

p(ztn | � ) p(�tn | xt ,�, �t , ztn)

where prior parameters are omitted and Z is an intractable normal-
ization constant . We sample from this complicated posterior using
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Markov Chain Monte Carlo (MCMC) inference that exploits Gaussian
statistics in the tangent space for e�cient updates while simultane-
ously respecting the geometry of the Lie group. This is accomplished
by sampling from the full conditional distributions of each latent vari-
able, grouped in order of discussion,

(xt , �tk ,�k ) ztn (� , Ek , Sk ,Wk ,Q) (3.34)

where t = 1, . . . ,T ,k = 1, . . . ,1,n = 1, . . . ,Nt and omitted leading
subscripts are taken to mean joint dependence (i.e., � = {�t }Tt=1 and
�t = {�tn}

Nt
n=1). Inference complexity is linear in the number of ob-

servations and parts. In our experiments, chains were generally mixed
after about 300 samples, with approximately 1 minute per sample be-
ing the worst-case timing for any data we tested on.

In the sequel we sketch the sampling of body transformations xt .
Full details are in Appendix A.2, along with sampling of the canonical
parts �k and part transformations �tk which take a similar form. We
also discuss sampling part associations ztn , which are conjugate except
when sampling assignments to the base measure. The conditionals in
the third grouping (� , Ek , Sk ,Q) can be sampled analytically due to
conjugate priors. Parts {�tk ,�k , Sk ,Wk , Ek } can be sampled in parallel
across k and ztn can be sampled in parallel across t,n.

Following, we employ the notational convention that any element
b 2 SE(D) has rotation matrix Rb 2 SO(D) and translation vector db 2
RD . Then, the body and per-time part dynamics can be represented as
block matrices with components,

xt =

✓
Rxt dxt
0 1

◆
�tk =

✓
R�tk d�tk
0 1

◆
(3.35)

and similarly for �k .

3.5.1 Lie Group Dynamics Decompositions

xt

xt�1

x
�1
t�1xt

Body Frame Projection

Logxt�1
xt

xt�1

G = SE(3)

xt

NL(xt | xt�1, Q)

Logxt�1
xt�1

Tangent Distribution

Figure 3-9: Top: Object dynamics of the
body frame xt at time t are projected
into body frame coordinates at time t�1
by the Lie group operation x�1t�1xt . Bot-
tom: The projection is in SE(3) with
Gaussian statistics in the tangent space
of xt�1. The �gure notionally depicts
two degrees of freedom, whereas SE(3)
has 6 degrees of freedom.

We exploit the Lie algebra to develop an e�cient Gibbs sampler for dy-
namical terms {xt ,�k , �tk }. For example, the operation x�1t�1xt trans-
forms the body frame at time t into that of the body frame at time t �1
(Fig. 3-9, top). This operation is an element of SE(D):

x�1t�1xt ,
✓
Rx�1t�1,xt dx�1t�1,xt

0 1

◆
, (3.36)

where Rx�1t�1,xt = RTxt�1Rxt and dx�1t�1,xt = RTxt�1(dxt �dxt�1). Elements in
the frame xt are mapped to the tangent space of xt�1 via the Rieman-
nian Log map (Figure 3-9, bottom):

Logxt�1xt , logG (x
�1
t�1xt ) =

 
V �1
x�1t�1,xt

dx�1t�1,xt
�x�1t�1,xt

!
(3.37)

67



The �rst entry V �1
x�1t�1,xt

dx�1t�1,xt are tangent space coordinates of trans-
lation and the second entry �x�1t�1,xt is a rotation vector. The invertible
linear operator V �1

x�1t�1,xt
is computable from rotation Rx�1t�1,xt (or from

�x�1t�1,xt ). This is well-de�ned for x�1t�1xt su�ciently close to identity
and consistent with small incremental motions.

3.5.2 Translation Conditionals

Recall that Equations (3.36) and (3.37) map xt to the tangent space
of xt�1. When conditioned on rotation, this mapping is linear in the
translation component dxt . This observation, combined with Gaussian
statistics in the tangent space, yields closed-form Gibbs updates for
translation. To see this, observe that the distribution over dynamics in
the tangent space is (Figure 3-9, bottom),

NL(xt | xt�1,Q) = N
✓✓

Cdxt + u
�x�1t�1,xt

◆ ���0,Q
◆

(3.38)

where C = V �1
x�1t�1,xt

R>xt�1 and u = �Vx�1t�1,xtR
>
xt�1dxt�1 . Conditioned on

rotation Rxt and previous body frame xt�1, the corresponding rota-
tion vector �x�1t�1,xt and matrix Vx�1t�1,xt are �xed quantities. This ren-
ders C and u computable and yields a Gaussian conditional distribu-
tion for dxt . This conditional constitutes our prior belief about dxt
given Rxt , xt�1 and covariance Q . Similar logic allows us to derive a
Gaussian conditional on dxt given future transformation xt+1. These
can be analytically combined to provide a Gaussian distribution for
dxt | Rxt , xt�1, xt+1. Because this is Gaussian, and the observation
model is also a product of Gaussians whose parameters are known
given {�k , Ek , �tk }1k=1 and {ztn}

Nt
n=1, it follows that the posterior on

dxt is also Gaussian, and analytically computable.
In contrast, sampling of rotation parameters lacks a closed form.

We utilize univariate slice sampling [145] for the full conditional of
each rotation parameter, along with a �xed number of MCMC propos-
als to correct for known rotational symmetries.

3.5.3 Rotation Conditionals

We perform univariate slice sampling [145] to sample from the rota-
tion full conditionals of body xt , canonical part �k and part trans-
formation �tk . This is straightforward because the Lie algebraic co-
ordinates of each transformation decompose into a set of univariate
coordinates corresponding to translation, and a set corresponding to
rotation. Given this decomposition sampling is straightforward: each
rotation coordinate is sampled, holding all others �xed. The task is
furthered simpli�ed because the bounds of ±� can be imposed.

One complication is that the distribution is multi-modal because
the observation likelihood is invariant to 180� rotations. There are two
such modes in SE(2) and four in SE(3). Given one mode, all others can
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Figure 3-10: Nonparametric Parts likelihoods are invariant to two rotation symmetries
in SE(2) (left) and four rotation symmetries in SE(3) (right). Notice that the colored
observation covariances cover the same volume when drawn at �xed standard devi-
ations, implying that Mahalanobis distances of part covariances to observations will
be equal for each symmetric rotation. While dynamics will typically favor one mode
over others, the slice sampler sometimes locks onto the wrong mode. The remedy is a
�xed number of MCMC proposals which, given a mode, can enumerate and propose
all other modes.

be enumerated by inverting any subset of the columns of the sampled
rotation matrix such that the determinant remains +1 (as opposed to
�1 for an inversion of an odd number of columns). Figure 3-10 visu-
ally demonstrates these symmetries for SE(2) and SE(3) Although the
dynamics will typically penalize one mode over others, it sometimes
happens that the slice sampler locks onto a particular mode. The solu-
tion is simple: we propose a �xed number of MCMC samples, one for
each enumerated mode. This is of minimal cost because there is only
one other mode in SE(2) and three other modes in SE(3).

When sampling rotation full conditionals, we use characteristic
width w = 0.01� and a maximum of 10 doubling iterations. Ten sam-
ples are drawn, then the MCMC proposals for rotation symmetries are
proposed starting from the �nal sample.

3.5.4 Part Associations

The conditional distribution for a single assignment to an existing part
k � 1 is given by,

p(ztn = k | �tn, xt ,�, �t , � , E) / �k p(�tn |xt ,�k , �tk , Ek ) (3.39)

where �k is the stick weight of part k . Conversely, association to a new
part is given by,

p(ztn = �1 | �tn, xt , � ) / (3.40)

�⇤

π
p(�tn | xt ,�⇤, �t⇤, E⇤) p(�⇤, �t⇤, E⇤) d(�⇤, �t⇤, E⇤)

where �⇤ is the stick weight corresponding to the base measure (i.e.,
all uninstantiated parts). This is not analytic in our model, but can
be e�ectively approximated by Monte Carlo sampling of parts (need
only be done once) or approximation by a constant (since the predic-
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tive distribution of parts will be broad, but centered at xt ). We obtain
satisfactory results with both approaches.

3.5.5 Conjugate Conditionals

We show that driving noise covariance Q for body frame of reference
xt is a product of an Inverse Wishart prior with a product of mul-
tivariate Gaussian likelihoods, yielding analytic sampling updates by
conjugacy. The same reasoning holds for part transformation driving
noise covariances {Sk }Kk=1.

The posterior distributions for Q is:

p(Q | x1:T ) / IW(Q | ·)

T÷
t=1

NL (xt | xt�1,Q) (3.41)

= IW(Q | ·)

T÷
t=1

N

  
V �1
x�1t�1xt

dx�1t�1xt
�x�1t�1xt

! ���� 0,Q
!

(3.42)

The terms inside the product are all computable given x1:T , so this is an
Inverse-Wishart multiplied by a product of Gaussians. In this case, the
posterior is conjugate to the prior, yielding Inverse Wishart updates
(see [73], Appendix A). The same form and reasoning applies for Sk ,
hence samples can also be analytically drawn for each Sk .

Part observation covariances Ek have the form:

p(Ek | �k , {xt , �tk , {�tn, ztn}
Nt
n=1}

T
t=1) / (3.43)

IW(Ek | ·)

T÷
t=1

N
⇣
(xt�k�tk )

�1 �̃tn | 0̃, Ẽk
⌘ I(ztn=k )

As above, this posterior is also Inverse Wishart.

3.5.6 Data-Dependent Priors

Results in the evaluation (Chapter 3.6 were computed by using data-
dependent priors that are similar in spirit to those used for static Dirich-
let ProcessMixtureModels. All InverseWishart priors (forQ, {Sk , Ek }1k=1)
were set to ten degrees of freedom, making the prior weak in the sense
that it accounts for 10 pseudo-observations (among tens to thousands
of observations incorporated into the posterior).

The Inverse Wishart scatter matrix prior for Q was set so that the
expected per-timestep body rotation was 0.25 radians (⇡ 15�) and ex-
pected per-timestep body translation was themean absolute di�erence
between time-adjacent pairs of observation sets.

The Inverse Wishart scatter matrix prior for Sk was set so that the
expected per-timestep part rotation was 0.025 radians (⇡ 1.5�) and ex-
pected per-timestep part translation was the mean absolute di�erence
between time-adjacent pairs of observation sets (expected translation
for parts and body are the same under the prior).
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The Inverse Wishart scatter matrix prior for part observation co-
variances Ek was set to 0.1 times the mean observation set variance.

The prior for the initial body transformation was set to identity
mean rotation with mean translation equal to the mean of the �rst ob-
servation set. The initial body transformation covariance was set diag-
onal and broad, so that � radians were within one standard deviation
of rotation covariance, and body translation variances were set equal
to the variance of the �rst observation set.

Canonical part transformations�k were set to identitymean trans-
formation with � radians being within one standard deviation of rota-
tion covariance, and canonical part translation variances set equal to
the variance of the �rst observation set.

3.6 Evaluation

Wecompare quantitatively and qualitatively to nonparametric and para-
metric baselines in Chapter 3.6.1. We present results on dynamic mesh
data in Chapter 3.6.2 and on chaotic double pendulum data in Chap-
ter 3.6.3.We additional look at the posteriormotion of parts and demon-
strate object segmentation based on relative part motion in 3.6.3. We
show synthesize motion from a learned representation in Chapter 3.6.4
and transfer of learned representations to a novel dataset in Chap-
ter 3.6.5.

3.6.1 Quantitative Comparison

Weexamine part discovery performance on three objectmotion datasets
and compare to manually-annotated ground-truth. We emphasize that
annotations are not incorporated into the inference procedure. We re-
fer to the datasets as hand, spider, and marmoset. hand and spider are
2-D image data, while marmoset is 3D data unprojected from a depth
camera. Inference utilizes 12�44 frames (depending on the dataset) and
results are compared to �ve manually-annotated ground-truth frames
(where ground truth is the number of parts and their segmentations,
discussed below). In each dataset, parts have nearly indistinguishable
appearances and none of the compared methods use an appearance
model. Consequently, part discovery is achieved via analysis of mo-
tion dynamics. Inputs only contain foreground (i.e., background is re-
moved), as is done in related works [126].

We report multi-object tracking and segmentation (MOTS) met-
rics [206], which measure how well the part associations overlap with
groundtruth part segmentations (MOTSA, sMOTSA,MOTSP) and how
stable the part associations are over time (IDS). These metrics are in-
tended for segmenting multiple objects, but we repurpose them to seg-
ment multiple parts of a single object. Comparisons are with IoU 0.3.

Figure 3-13 shows example ground-truth segmentations for each
dataset used for quantitative comparison. Ground-truthwas hand-labeled,
and the number of parts were chosen at the granularity supported by
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Figure 3-11: Example part associations in hand, spider and marmoset. For each sequence, example frames from the original video
are shown (top-row) with part associations and object/part coordinate frames overlaid from our method (middle-row) and baseline
NPE associations (bottom-row). Parts estimated by our method are largely consistent over time, even for the highly-articulated
spider legs.

the dataset (e.g. marmoset has head, body and tail but not hands or feet
because they were not visible from the top-down RGB-D views).

We compare against two baselines: the Bayesian nonparametric
model of [233] (discussed in Chapter 3.7), which we call the nonpara-
metric extents model npe, and a parametric modi�cation of [233], so
that it is given the advantage of knowing the true number of parts. We
call this the parametric extents model pe. Neither npe nor pe consider
part persistence over time (as we do), so for these methods we use the
Hungarian algorithm [141] to compute part correspondences between
pairs of timesteps on the distance (in the body frame) of component
means.

Taken together, our model, and the two baselines, constitute an ab-
lation study in which we consider unknown number of parts with Lie
group dynamics, and unknown / known number of parts, without Lie
group dynamics. In all cases, we compute mean and standard devia-
tion of MOTS statistics on 100 samples taken from a Markov chain of
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Dataset Method IDS MOTSA MOTSP sMOTSA

hand

ours 0.00 ± 0.00 2.79 ± 0.30 0.71 ± 0.01 1.34 ± 0.24
npe 4.45 ± 1.84 1.93 ± 0.8 0.51 ± 0.01 �4.2 ± 0.78
pe 4.03 ± 2.11 1.57 ± 0.44 0.47 ± 0.01 �0.33 ± 0.37

spider

ours 5.14 ± 1.49 3.44 ± 0.25 0.55 ± 0.02 1.26 ± 0.18
npe 19.6 ± 2.88 �4.4 ± 0.92 0.51 ± 0.01 �6.72 ± 0.9
pe 17.28 ± 3.06 1.73 ± 0.31 0.52 ± 0.01 �0.24 ± 0.27

marmoset

ours 1.24 ± 0.65 1.39 ± 0.89 0.49 ± 0.02 �0.47 ± 0.71
npe 3.18 ± 1.28 �32.44 ± 2.78 0.35 ± 0.01 �34.06 ± 2.72
pe 0.43 ± 0.51 3.86 ± 0.17 0.48 ± 0.00 1.77 ± 0.17

average

ours 2.12 ± 0.71 2.54 ± 0.48 0.58 ± 0.02 0.71 ± 0.38
npe 9.07 ± 2.0 �11.63 ± 1.5 0.46 ± 0.01 �15.0 ± 1.47
pe 7.25 ± 1.89 2.39 ± 0.31 0.49 ± 0.01 0.39 ± 0.27

Table 3-12: Quantitative comparison of Nonparametric Parts Model. (ours) with non-
parametric baseline npe and parametric baseline pe using MOTS metrics. Lower IDS
is better, higher MOTSA, MOTSP, and sMOTSA is better. Best-performing method is
emboldened.

1000 samples, use data-dependent priors (speci�ed in Chapter 3.5.6),
and set concentration parameter � = 0.1. Table 3-12 shows quantita-
tive results while Figure 3-11 show qualitative comparisons between
our method and the baseline.

Figure 3-13: Groundtruth segmenta-
tions used for Nonparametric Parts
Model.

Our model outperforms the nonparametric baseline in all datasets
andmetrics. The pe baseline (which bene�ts fromknowing the number
of parts in the groundtruth) outperforms our method on label switches
(IDS) and overall quality (sMOTSA) on the 3D marmoset data. This is
largely due to noisy data from the depth sensor generating observa-
tions from the background that are distant from the object, but not so
distant as to be relegated to the base measure. We see very little ID
switching (IDS) and relatively high precision (MOTSP) in our model,
which we attribute to the canonical parts �k enforcing that each part
transformation �tk move stably. Visually, part assignments correspond
best to ground-truth parts that are extremities (�ngers, legs, tails), but
tend to oversegment large object interiors (palms, bodies).We attribute
this to the ellipsoidal observation model but �nd that, for the purposes
of part analysis, it has no obvious negative impact.

3.6.2 Dynamic Mesh Segmentation

We apply our method to the squat1 sequence in the articulated mesh
dataset of [204], decomposing the mesh sequence into parts as shown
in Figure 3-14. Note that legs are segmented into two parts each, while
arms are segmented into one part. This is consistent with the move-
ment in this sequence where the legs bend, but the arms are held
straight. Minor artifacts appear when the lower-left leg (red) has small
numbers of associations above the knee when the person is squatting,
but not when standing straight up. Qualitatively, the results conform
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Figure 3-14: Dynamic mesh segmentation. By using points sampled inside a mesh as
the input to our nonparametric parts model, then computing associations to mesh
vertices, our model can learn parts and dynamics from mesh data. Additional views
in Figure 3-1.

to human part interpretation.

3.6.3 Motion Analysis

Figure 3-15: Part posteriors for hand
and spider. Dotted ellipses are the mean
part covariance, solid ellipses visualize
the part posterior location covariance.
Points are observed part locations used
for the posterior updates. The leg loca-
tions of spider are smeared due to their
articulation whereas the �ngers of the
hand are concentrated.

We show how our model facilitates novel object / part analysis. Begin-
ning with Figure 3-15, we visualize part diagrams for hand and spider.
Dotted ellipses show the observation noise model Ek for each part (in
the object frame), while solid ellipses show the covariance for that
part’s translation across time. Because the part translation covariances
are spatially separated, the model resists label switching between parts
because they tend to stay proximate to their canonical frame. We ob-
serve that the part translation covariances are tight for the hand, but
horizontally smeared for the spider–this is expected, because the �n-
gers moved very little in hand compared to the legs in spider.

One analysis that our model enables is the comparison of part mo-
tions in the body frame (i.e. motion not from the object moving, but
from its parts). By integrating each part’s motion over time within the
body framewe can determine which areas of an object experience high
or low relativemotion. Figure 3-16 shows that, for spider, the legs are
able to be segmented from other parts due to their rapid motion.

We also show that our model can segment the rapid, chaotic mo-
tion of a double pendulum. Partial confusion of assignments occurs
when the pendulum is folded on itself (e.g., third image in �rst row)
but part transformations are e�ectively maintained through areas of
confusion.

3.6.4 Motion Synthesis

In Figure 3-18, we sample new part motions from the model after all
parameters have been sampled from the spider dataset. Speci�cally,
we generate new body transformations, in which the spider is sub-
ject to constant velocity and no rotation. Part transformations �tk are
seeded with inference results then resampled from their full condition-
als. Observations are taken from a single frame of the original video,
projected into their respective part coordinate systems according to
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Figure 3-16: Nonparametric Parts object segmentation based on relative part motion
over time. Whereas the parts nearest the body center exhibit little motion (in the
body frame), the extremities of spider exhibit large amounts of motion. (Top-Left):
Part associations. (Top-Right): Part segmentation based on motion energy. (Bottom):
Log cumulative part motion energy across time (color-coordinated to associations).

the inferred part assignments, then reprojected to new world coordi-
nates using the newly synthesized body and part transformations at
each time. We stress that these are novel part motions and that they
can be generated for arbitrary durations and body paths.

We observe that parts close to the spider’s center exhibit relative
stability, and the legs demonstrate the expected rhythmic walking mo-
tion. The pedipalps (the two front appendages) display implausible ‘ba-
ton twirling-like’ rotations, however. This is because these parts un-
dergo foreshortening and occlusion in the original dataset. Since oc-
clusion is not explicitly handled by our model in SE(2), inference per-
mitted large rotations to explain observations on the pedipalps as they
go from visible to not visible and vice versa (causing label switches
along the way). Nevertheless, the spider’s basic walking motion re-
mains recognizable.
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Figure 3-17: Nonparametric Parts Model segments a double pendulum.

3.6.5 Generalization

We demonstrate that our model can reason about the motion and parts
of di�erent instances of the same type of object across multiple videos.
This is accomplished by assuming that the number of parts and the
canonical part transformations, �k , are shared by similar objects, but
that the motion parameters are distinct. In this experiment, we sample
all parameters (including number of parts) from a video containing
one instance of an object. In the second video, we restrict sampling
to associations ztn , body transformations xt and part transformations
�tk . Figure 3-19 shows RGB-D data projected into 2D for two videos;
all model parameters are initially sampled in the video of the top row,
then body and part transformations are sampled in the second video.

We note that part assignments correspond reasonably across videos.
By reasoning in 3D, our model accommodates scale changes within
and across videos, such as when the object is closer or further from
the camera. While we do see some migration of part locations on the
torso, this is due to the proximity of the respective�k ’s combined with
su�ciently free motion dynamics. Regardless, torso parts remain as-
sociated to the torso, and the tail is consistently segmented.

3.7 Related Works

This work draws on body/parts models, Bayesian nonparametric dy-
namical models and Lie groups. Each contain a rich literature so we
highlight only the most relevant details. Importantly, we are aware of
no work that models body and part motion over time with Lie group
dynamics, that is also unsupervised and nonparametric in the parts.
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Figure 3-18: Novel body and part motions sampled from nonparametric parts model
after being observing spider data. Body frame is subjected to constant velocity while
part transformations are sampled.
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Figure 3-19: Example of how ourmodel can infer results onmultiple videos of the same
type, but di�erent instances, of an object in motion. These results were computed on
RGB-D data but are visualized in 2D.

3.7.1 Body and Part Models

The many treatments of part-based modeling begin with the pioneer-
ing work on human models of pictorial structures [62] and cardboard
people [104]. Later work on deformable parts models [59] removes the
need to de�ne object-speci�c part con�gurations. Building on the suc-
cess of o�ine analysis, real-time human pose tracking is now possible
as well [185, 67]. All of these methods require specifying the num-
ber of parts. More detailed shape and pose models have been devel-
oped for a variety of objects, using a combination of known body
models, mesh representations and sophisticated collection schemes in-
cludingmultiple cameras, IMUs, lasers and/or specially-painted targets
[131, 234, 29, 167].

Unsupervised methods [223, 126, 174, 234, 235] have signi�cant re-
strictions such as working for only 2D or only 3D data, or requiring
annotated landmarks or point correspondences. In contrast, our unsu-
pervised method works for 2D and 3D inputs, requires only a single
sensor observing an object in motion, requires no distinctive or anno-
tated object markings, and no observation correspondences.

3.7.2 Lie Groups

Our work relies on the Lie group SE(D), the space of rigid transfor-
mations, for representing body and part motion. Lie groups have been
used extensively in robotics and computer vision tasks such as SLAM [34],
navigation [125], and parts-based models [32, 68, 86]. De�ning obser-
vation models for Lie groups is challenging since the group is not a
vector space. As such, notions of distance (and therefore distributions)
require special care [157, 228], e.g., simple additive noisemodels violate
the group topology. Our approach de�nes a distribution (Gaussian) in
the tangent plane about an element of the group [213]. Most works that
model dynamics with SE(D) perform inference with approximate �l-
ters or smoothers, commonly the EKF [30] or UKF [34]. One exception
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that does full posterior inference is [189], though that work is not a dy-
namical model. See [55] for an accessible introduction to Lie groups,
and [83] for a more thorough introduction.

3.7.3 Nonparametric Models

Sequentialmodels extending thewell-knownDirichlet process (DP) [12]
include the HDP-HMM [193], sticky HDP-HMM [66], in�nite HMM
[19], and in�nite factorial HMM (ifHMM) [69]. Each of these permit
an in�nite number of states, but are restricted to discrete labels. Exten-
sions to continuously-varying latent states include theHDP-SLDS [65],
dynamic HDP [171], mixture of DPs [54], and the evolutionary HDP
[229]. While each has the desirable property of shared global dynam-
ics, none capture component persistence allowing new atoms at each
time instance. This is undesirable for parts modeling as objects do not
tend to acquire and lose parts over time and nonparametric priors al-
ready risk creating duplicate parts [66].

Closely related is the in�nite factorial dynamical model [202], a
continuous extension of the ifHMM which only permits shared global
binary on/o� states, and the Transformed Dirichlet Process [191], a
DP allowing multiple groups of observations to share the same set of
atoms (but with no dynamics). Most relevant, and what we use for
comparison, is the Bayesian nonparametric model of Zhou et al. [233],
a linear dynamical model where parts are independently sampled from
a Dirichlet process at each time (but with no part persistence or Lie
group representation).

3.8 Conclusion

We have demonstrated that our nonparametric representation of kine-
matic bodies infers meaningful part decompositions of objects in an
unsupervisedway, by simply observing them inmotion (Chapters 3.6.1,
3.6.2). Our Lie group representation (Chapter 3.4) constrains articula-
tions of moving parts to physically plausible kinematic states, without
the requirement of object-speci�c knowledge such as skeletal struc-
tures. Part decompositions can be learned on very short sequences,
and generalize to other datasets and instances of the same object type
(Chapter 3.6.5). In contrast to methods that rely on extensive train-
ing data and/or object-speci�c 2D/3D models, we demonstrate robust
analysis by direct observation of single instances of an object, without
distinct visual part appearance.

Our model simpli�es inference and motion analysis while suggest-
ing straightforward extensions. Part persistence ensures that the rep-
resentation of parts persists over a video sequence, even if parts be-
come occluded. Hierarchical extensions over multiple videos of simi-
lar objects, or multiple videos and multiple objects, would be robust to
part occlusions in any single video. Explicit models of part shape may
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avoid over-segmenting large body regions and visual appearancemod-
eling will help part segmentation when objects have visually distinct
parts. Modeling gravity and friction may enable estimation of physi-
cal object properties such as mass and inertia. Finally, incorporating
distributions on manifolds into probabilistic programming languages
would expedite development and enable an entirely new class of mod-
els with representations that could be interpreted by users without
intimate knowledge of Lie groups and Riemannian manifolds.
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Chapter 4

Multi-Object Tracking with
Uncertainty Quanti�cation

“There are known unknowns ...
and there are unknown
unknowns”
— Donald Rumsfeld

4.1 Approach
4.2 Contributions
4.3 Multidimensional Assignment
4.4 Related Works
4.5 Joint Posterior Tracker
4.6 Inference
4.7 Uncertainty Reduction
4.8 JPT Compared to MCMCDA
4.9 Evaluation
4.10 Conclusion

In multi-object tracking the trajectories of an unknown number of ob-
jects are estimated from noisy observations over time. Assigning ob-
servations to objects is known as the data association problem. The
well-known multidimensional assignment formulation [168] of data
association provides a constrained objective function in which each
observation is assigned either to an object or to clutter and no object
is assigned more than one observation at any time. It permits arbitrary
object arrivals and departures and assumes that there is a �xed cost for
each association hypothesis. The complexity of the multidimensional
assignment formulation is factorial in the number of observations at
each time and exponential in the number of timesteps, making it NP-
hard [26]. The multidimensional assignment objective is de�ned and
related to other approaches in Chapter 4.3.

Most approaches to multi-object tracking solve an objective func-
tion, such as the multidimensional assignment objective, using op-
timization [84, 119, 109, 226, 35]. While this can provide automated
and sometimes fast inference with the help of sophisticated solvers, it
yields a single, point estimate solution to the data association prob-
lem. Yet, ambiguities commonly occur in multi-object tracking data,
such as when two targets with similar appearance and kinematic state
approach one other and then diverge (see Figure 1-4 for an example).
A tracker that incorrectly estimates the targets as crossing when they
did not (or vice versa) has committed an identity switching error. Iden-
tity switches manifest as multiple modes in the objective function, but
an optimization-based solution will only identify one mode.

All approaches to multi-object tracking reason over data associa-
tions, but few explicitly represent uncertainty, much less make it avail-
able for subsequent tasks. Traditional applications in security [21],
surveillance [152], sensor networks [177] and robotic localization [149]
favor real-time performance. More recently, there is increased interest
in the use tracking for follow-on decision making and analysis includ-
ing the creation of gold-standard datasets [207], sports analytics [61],

81



study of animal behavior [233] and cellular dynamics [13]. Such appli-
cations bene�t signi�cantly from accurate representations of uncer-
tainty to inform subsequent analysis.

State-of-the-art tracking algorithms accumulate thousands of iden-
tity switching errors on short sequences as shown in the MOT Chal-
lenge benchmarks [136]. These errors limit the utility of multi-object
tracking in follow-on analysis and decision making because tracking
errors will propagate. In sports analysis, tracking errors will lead to
faulty calculation of player attributes. Worse, in scienti�c applications,
identity switching can lead to support for incorrect conclusions.

Errors cannot be avoided in multi-object tracking, but an accu-
rate representation of uncertainty can at least highlight where they
are likely to have occurred. Yet, very few approaches to multi-object
tracking are formulated in a way that permits uncertainty quanti�ca-
tion. Of the ones that do, they either do not solve the general multi-
object tracking problem (batch reasoning, unknown number of objects,
arbitrary arrival/departure, clutter), they do not use exact inference,
or they are limited by gating heuristics that restrict the association
hypotheses they can represent. I design the �rst fully-Bayesian model
that addresses the general multi-object tracking problemwhich explic-
itly quanti�es uncertainty, uses e�cient, exact inference, and is free of
gating heuristics.

4.1 Approach

This work develops the Joint Posterior Tracker (JPT), a generative,
Bayesian model on associations and trajectories for the general multi-
object tracking problem. JPT supports arbitrary dynamics and observa-
tions models, including linear or nonlinear models in arbitrary dimen-
sion. It supports an unknown number of objects with a uniform prior
over permutations of association labels in the range [0,1). Arbitrary
object arrival and departure times, and missed or false detections—
collectively called event counts—are modeled with prior distributions
on the number of these events that occur at each time. Constraints are
placed on associations such that event counts can be uniquely identi-
�ed from an association hypothesis. JPT adopts additional constraints
used in the multidimensional assignment formulation: that every ob-
servation must be assigned to an object or clutter, and no object can
have more than one observation assigned to it at any time. These con-
straints are straightforward to specify in the generative model, but
make inference challenging. JPT reasons over a joint posterior of tra-
jectories and associations; thus, it departs from the multidimensional
assignment formulation because it does not assign a �xed cost to each
association hypothesis. A �xed cost can be constructed for the multi-
dimensional assignment formulation by marginalizing over all latent
trajectories for a given association hypothesis.

Given the posterior distribution implied by JPT’s generativemodel,
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I construct Metropolis-Hastings inference [85] to draw posterior sam-
ples. This is di�cult due to the existence of constraints and the ex-
ponential and factorial scaling of the number of possible association
hypotheses. The dynamics and observation models parameterize a for-
wardmodel, which inference uses where possible to aid reasoning over
permutations of object-object and object-clutter associations. Directly
using the forwardmodel enables rejection-free inference in some cases,
and endows JPT with e�cient uncertainty quanti�cation.

I evaluate JPT against sampling- and optimization-based trackers,
both on traditional metrics and on a novel uncertainty quanti�cation
metric that matches a set of multi-object tracking samples to a known
set of modes using a track comparison metric and discrete optimal
transport. I collect a novel scienti�c behavior dataset consisting of
long-term marmoset (a type of primate) movements with many par-
tial and full occlusions (15k timesteps, 2 objects, 25k observations). i
evaluate JPT using traditional CLEAR MOT tracking metrics [23] on
theMarmoset dataset, as well as a Soccer dataset (1.5k timesteps, 22 ob-
jects, 12k observations). A synthetic dataset is created to evaluate un-
certainty quanti�cation. Batch Markov Chain Monte Carlo Data Asso-
ciation (MCMCDA) [153] is the primary baseline for JPT because it can,
in principal, represent uncertainty, addresses the general multi-object
tracking problem, and uses exact, sampling-based inference, modulo
gating heuristics on the maximum spatial and maximum temporal dis-
tance between associations to a single track. Figure 4-1 compares JPT
and MCMCDA uncertainty quanti�cation; Chapter 4.9 further ana-
lyzes uncertainty quanti�cation.

Uncertainty quanti�cation is the focus of this work. Appearance
modeling, which is required for performant comparisons on modern
tracking benchmarks, is not treated. Instead, JPT is compared to amod-
ern variant of Multiple Hypothesis Tracking (MHT) [109], which was
shown to achieve state-of-the-art performance on modern tracking
benchmarks when paired with deep appearance features.26 MHT is 26 Since publication, MHT performance

has been superseded by end-to-end
deep neural network approaches.We do
not compare to these approaches be-
cause appearance cannot be straightfor-
wardly separated from data association.

compared to as a way to demonstrate the typical point estimate ap-
proach of multi-object trackers and to ground the CLEAR MOT track-
ing metrics calculated on each dataset. In our tracking comparisons,
no approach makes use of appearance modeling.

Finally, I demonstrate that JPT’s uncertainty quanti�cation enables
rapid improvement of track quality by reducing uncertainty that arises
from ambiguous data association events. This is accomplished using
Sequential Bayesian Optimal Experiment Design, in which possible
human annotations are modelled as experiments that could be per-
formed. The experiment which maximizes mutual information [24]
(equivalently, minimizes JPT posterior uncertainty) is iteratively cho-
sen in greedy fashion. Annotations are pairwise questions of the form
“do observations �t and �t 0 belong to the same object or not?”
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4.2 Contributions

This work develops the Joint Posterior Tracker (Chapter 4.5), the �rst
fully Bayesianmulti-object tracker that addresses the general (i.e., batch)
multi-object tracking problem (Chapter 4.3), uses exact inference, and
is not limited by gating heuristics. JPT emphasizes joint uncertainty
over association hypotheses and object trajectories that, combinedwith
exact inference, permits representation of multiple possible outcomes
as discrete samples from a Markov chain whose limiting distribution
is the JPT posterior (Equation 4.10).

The JPT posterior is well-de�ned but it can only be evaluated up
to proportionality. Furthermore, constraints imposed by solving the
general multi-object tracking problem (Equation 4.4) complicate pos-
terior inference. To enable e�cient sampling from the JPT posterior, I
construct MCMC proposals that reason over permutations of object-
object and object-clutter associations (Chapter 4.6). Notably, I gener-
alize the method of [144], which constructs a discretized grid in obser-
vation space and e�ciently reasons over permutations on that grid by
sampling from the joint distribution of a specially-constructed Hidden
Markov Model. Whereas their method is explicitly limited to the ob-
servation space (else it loses detailed balance), I extend their approach
to permutations in the latent space; speci�cally, the latent space of
trajectories and associations. Doing so enables e�cient exploration
of potential identity switching errors while retaining detailed balance
(Chapter 4.6.1, Appendix A.4)

Finally, I show that JPT explores posterior modes much more com-
pletely and e�ciently (Chapter 4.9.4) with superior performance on
standard multi-object tracking metrics (Chapter 4.9.5) on scienti�c and
sports datasets as compared to baselines. Using JPT’s accurate repre-
sentation of uncertainty, I demonstrate automatic scheduling of a small
number of disambiguations that facilitate rapid improvement in tra-
jectory quality with a consequent reduction in posterior uncertainty
(Chapters 4.9.6, 4.7).

4.3 Multidimensional Assignment

Multi-object tracking can be formulated in several common ways: as
a set partitioning problem [15], a set packing problem [140, 230], a
maximum-weight independent set problem [155] or amultidimensional
assignment problem [168]. A review of these formulations is conducted
by [45], who shows that the multidimensional assignment formula-
tion is capable of representing a broader set of modeling assumptions;
namely, it is not limited to pairwise terms as the set-packing, network-
�ow solutions [162, 22] are. We next de�ne the multidimensional as-
signment problem, as it is most similar to how JPT is formulated.

Consider t = 1, . . . ,T timesteps with corresponding observation
sets � = {�1, . . . ,�T } where the time-t observation set �t = {�tn}

Nt
n=1
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Figure 4-1: Mode capture of JPT and MCMCDA posterior trajectories. Trajectories ± one SD marginalized over sampled associa-
tions in a multi-object tracking scenario. JPT (Top) correctly captures the uncertainty from all ambiguous region while MCMCDA
(Bottom) �nds only one.

has Nt observations. Hence, �tn is the nth observation at time t . Let
It = {0, 1, . . . ,Nt } be an index set into �t , where 0 indicates a false
positive or missing detection. De�ne P = I1 ⇥ I2 ⇥ · · ·⇥ IT as the set of
paths through all index sets such that every path is length-T and has
at least one non-zero index. Interpret a path with a single non-zero
index as a false-positive. Interpret a path with two or more non-zero
indices as an object. De�ne � (i1, . . . , iT ) as a �xed, real cost for path
(i1, . . . , iT ) 2 P where it 2 It , and B(i1, . . . , iT ) is a boolean variable
signifying whether path (i1, . . . , iT ) is included in a solution. Then the
multidimensional assignment problem is to �nd the B(i1, . . . , iT ) that
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minimizes:

min
N1’
i1=0

N2’
i2=0
. . .

NT’
iT =0

� (i1, . . . , iT ) B(i1, . . . , iT )

subject to ’ ’
I\it

. . .
’

B(i1, . . . , iT ) = 1

B(i1, . . . , iT ) 2 {0, 1}
8it = 1, . . . ,Nt ,8t = 1, . . . ,T

(4.1)

The objective sums over the costs of all included paths in the solution.
For each observation there is a constraint enforcing that it be claimed
by exactly one path included in the solution (equivalently, that an ob-
servation is uniquely associated either to clutter or a distinct object).
MHT [109] and JPDA [84] are deterministic solutions whereas MCM-
CDA [153] is a stochastic solution to the multidimensional assignment
problem. The number of possible paths grow exponentially with T
and factorially at each time with Nt . Solving this exactly is NP-hard
[26, 158], forcing the above approaches to use gating heuristics such
as a maximum distance between object locations and observations, a
maximum distance between pairwise object locations, or a maximum
number of consecutive missing detections.

We note that JPT represents a departure from the multidimen-
sional assignment formulation because it does not assign a �xed cost to
each association hypothesis. While a �xed cost could be constructed–
such as by using smoothed state estimates or marginalizing out all
trajectories–our focus is to explore and represent joint uncertainty in
trajectories and data associations. JPT is not the only work to depart
from a traditional multi-object tracking objective [11].

4.4 Related Works

We consider multi-object tracking approaches from the perspective of
three capabilities. First, do they process measurements one frame at a
time (single-scan, [181, 108, 33]), multiple frames at a time (multi-scan,
[109]) or all at once (batch, [35, 153, 212]). Second, do they yield point
estimates (as in optimization), [109, 84, 212] or represent multiple ex-
planations (sampling or variationalmethods, [181, 199]). Third, do they
utilize gating heuristics that restrict possible hypotheses [109, 153].
JPT is a batch, sampling-based tracker with no gating heuristics that
reasons over a joint distribution of an unknown number of objects,
their trajectories and the association of objects to observations.

Recent approaches to multi-object tracking emphasize sophisti-
cated appearance, motion or shape modeling in an optimization-based
framework [84, 119, 109, 226, 35]. They forego representing association
uncertainty, providing a single point-estimate, and thus do not permit
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JPT MCMCDA Var BP
Uncertainty X X X X

Exact Posterior X X
General MOT X X X

Table 4-2: Batch multi-object trackers that quantify uncertainty in data association.
Joint Posterior Tracker (JPT): ourmethod;MCMCDA: [153]; Variational Tracker (Var):
[199]; Belief Prop (BP) Tracker: [216]

recovery from errors. The best of appearance models will still su�er
from association errors in complex scenes.

Monte-Carlo approaches including [181], [108], [33] represent un-
certainty via sampled realizations, but each are single-scan �lters that
do not incorporate future information.

Random Finite Set (RFS) tracking methods propagate a Bayesian
�lter distribution de�ned on random sets. Data association is implicit
in RFS but can bemade explicit (as it is in JPT) by including track labels;
when this occurs, they are called Labeled Random Finite Sets. Relations
between RFS and explicit data association is an active areas of research
[215, 44, 39]. The RFS �lter modelsmarginal states conditioned on past
data—it does not model future information or joint state over time, as
JPT does. RFS propagation induces super-exponential complexity ne-
cessitating heuristics such as truncation to K-best solutions, produc-
ing inaccurate UQ. A recently proposed smoothing RFS [205] models
marginal states only and also uses K-best heuristics. Unlike RFS �l-
ters, MCMCDA samples from a posterior de�ned on the generalMOT
problem (batch tracking.

Table 4-2 summarizes related work that represents some aspect
of uncertainty, such as marginal uncertainty using belief propagation
[216] and approximate uncertainty using variational methods [199].
The former treats a �xed number of objects, while the latter samples
from a variational approximation eliminating theoretical guarantees.

Markov-Chain Monte Carlo Data Association (MCMCDA) and its
variants [153, 21, 72] is most closely related to JPT. MCMCDA can be
run as a �lter or in batch. Batch MCMCDA and JPT are both Bayesian
treatments of the general multi-object tracking problem, but exhibit
fundamental di�erences that we summarize here and expand on in
Chapter 4.8:

1. MCMCDA de�nes a marginal posterior over associations that
induces amarginal posterior on trajectories at each timewhereas
JPT de�nes a joint posterior over associations and trajectories
over all time.

2. MCMCDA inference requires tuned gating heuristics that cre-
ate excess objects if set too low or reduce inference to a random
search if set too high and in all cases limits its ability to represent
the con�guration space of possible object associations. In con-
trast, JPT inference uses no gating heuristics and is instead made
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Time xt zt at ft dt �t

1 1.0, � 1, 0, 0 1 2 0 0
2 1.3, 3.0 1, 2 1 0 1 0
3 1.5 0, 1 0 1 1 1
4 �, 2.7 2 0 0 1 0
5 �, 2.5 2 0 0 1 1

<latexit sha1_base64="pseiFU1y102fUA7+dsuEn4NMlQ8="></latexit>

Figure 4-3: JPT’s latent representation. (Top): Observations � colored by their as-
sociation (green/blue for either of two objects, gray for clutter) and connected
by sampled trajectories. (Bottom): Trajectories x , associations z and counts M =

{at , ft ,dt , �t }Tt=1. Objects are observed at distinct arrival and departure times. Trajec-
tories are length-T , padded by ; before arrival and after departure. Trajectory states
with missing detections (blue at t = 3) are marginalized over.

e�cient by using proposals based on its forward model. Unlike
MCMCDA, JPT can represent any association hypothesis.

3. both MCMCDA and JPT represent posterior uncertainty, but in
Chapter 4.9 we show that JPT quanti�es uncertainty much more
accurately than MCMCDA.

To our knowledge, batch MCMCDA is the only tracker that treats the
general (i.e., batch) multi-object tracking problem, samples from its
posterior exactly (modulo gating heuristics), and can, in principle, rep-
resent posterior uncertainty. As such, we use batch MCMCDA as a
baseline for comparison to JPT.

4.5 Joint Posterior Tracker

The objective of multi-object tracking is to partition a set of observa-
tions across time into collections of objects such that every observation
is uniquely assigned to one and only one object. Themost generalMOT
formulation allows for clutter (false-positives), missed detections, un-
known number of objects, and arbitrary object arrival and departure
times. There aremany formulations formulti-object tracking. In Chap-
ter 4.3 we outlined several and de�ned the common multidimensional
assignment formulation as it is most closely related to JPT.

JPT de�nes a joint distribution on trajectories and assignments. To
reason over trajectories and assignments, we must de�ne a generative
model for observations � = {�1, . . . ,�T } over all times 1, . . . ,T where
�t = {�tn}

Nt
n=1. Vector-valued observation �tn is the nth observation at

88



time t and has dimension D� . Nt is the total number of observations
at time t . Table 4.1 summarizes notation by JPT.

Variable Description
xtk 2 R

dx Trajectory
�tn 2 Rd� Observation
ztn Association
Mt Event counts at , dt , ft , �t
at � 0 Object arrivals
dt � 0 Object detections
ft � 0 Clutter
�t � 0 Object departures
al Annotation
t � 1 index for time
k � 1 index for objects
n � 1 index for observations
l � 0 index for annotation
� (x) Trajectory permutation
� (z) Association permutation

Table 4.1: Joint Posterior Tracker nota-
tion.

Associations z de�ne a partition of � into objects and clutter. Tra-
jectories x are the latent states of objects over all times. JPT emphasizes
accurate representations of posterior uncertainty. For clarity of expo-
sition, we only model object position and velocity. However, shape or
appearance models can be incorporated without modi�cation of any
equation in this work.27 Following, Figure 4-3 can be used to ground 27 For example, linear Gaussian dynam-

ics can be placed on appearance fea-
tures, when available. In videos, this
could take the form of deep appearance
features extracted from a region around
each observation as done in [109].

de�nitions of JPT’s latent representation and generative model.

4.5.1 Event Counts p(M)

JPT explicitly models clutter (false-positives), missed detections and
arbitrary arrival and departure times for an unknown number of ob-
jects. At time t , counts of new object arrivals at , clutter observations
ft , object detections dt and object departures �t are modeled as

at ⇠ Pois(at | �b ) ft ⇠ Pois(ft | �f )
dt ⇠ Bin(dt | et�1,pd ) �t ⇠ Bin(�t | dt ,p�)

(4.2)

where e0 = d0 = 0 and et = et�1 + at � �t are counts of existing
objects (those that arrived at time t 0  t and have not yet departed).
Prior parameters �b , �f are the new object arrival and false alarm rates
and pd ,p� are the detection and departure probabilities for existing
objects. Every object is assumed to be observed at least twice: when
it arrives and when it departs. Denote the set of all event counts as
M = {M1, . . . ,MT } whereMt = {at , ft ,dt , �t }. From Equation 4.2, the
generative model for latent countsM is,

p(M) =

T÷
t=1

p(Mt | Mt�1)

=

T÷
t=1

p(at ) p(ft ) p(dt | et�1) p(�t | dt )

(4.3)

4.5.2 Associations p(z | M)

JPT represents the association of each observation to an integer-labeled
object or clutter. We denote the association of observation �tn by the
latent random variable ztn 2 Z+ [ {0} where ztn = k > 0 if �tn is as-
sociated to target k at time t and ztn = 0 if �tn is associated to clutter.
An association hypothesis is the set of all associations z = {z1, . . . , zT }
for zt = {ztn}

Nt
n=1.

Conditioned on event counts M , association hypotheses z have a
uniform prior over the space of possible associations subject to con-
straints that enforce that all observations are either associated to an
object or clutter (satis�ed by de�nition of ztn), that an object claim at
most one observation at each time t (�rst constraint in Equation 4.4)
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and that associations be consistent with event counts M (remaining
constraints):

p(z | M) / 1 if
8>>>>>>>><
>>>>>>>>:

|{n : ztn = k}|  1 8k > 0,8t
ft = |{n : ztn = 0}| 8t
at = |{k > 0 : ztn = k and zt 0n , k for all t 0 < t}| 8t

�t = |{k > 0 : ztn = k and zt 0n , k for all t 0 > t}| 8t

at + dt = |{n : ztn > 0}| 8t

(4.4)

Association hypotheses that do not satisfy these constraints have zero
probability. As noted, the space of possible associations is exponential
in timeT and factorial in the number of observations Nt at each time t
[158]. Reasoning over this large space is the fundamental challenge of
data association. Incorporating the constraints above adds additional
complexity as discussed in Chapter 4.6.

4.5.3 Dynamics p(x | z) and Observations p(� | x, z)

We denote the trajectory of object k > 0 at time t by the latent random
variable xtk 2 RDx with state dimension Dx and the set of all trajec-
tories by x = {x1, . . . , xT } where xt = {xtk }

K (z)
k=1 with K(z) being the

number of objects in hypothesis z. Every object has a length-T latent
trajectory, but is represented by xtk = ; for any time before its ar-
rival or after its departure. We de�ne the dynamics model for objects
1, . . . ,K(z) as:

p(x | z) =
T÷
t=1

p(xt | x1:t�1, z) =
T÷
t=1

K (z)÷
k=1

p(xtk | xt 0k ) (4.5)

where t 0 = t � 1 and the observation model as

p(� | x, z) =
T÷
t=1

p(�t | zt , xt ) =
T÷
t=1

Nt÷
n=1

p(�tn | ztn, xt ) (4.6)

As is commonly done, we specialize Equations 4.5, 4.6 to a linear Gaus-
sian system yielding dynamics

p(xtk | xt 0k ) =

(
N (xtk | Fxt 0k ,Q) if xt 0k , ;
N (xtk | µ0, �0) o.w.

(4.7)

The �rst line is a linear Gaussian system with system model F and
noise covarianceQ . The second line speci�es a shared prior on trajec-
tories with prior parameters µ0, �0 that are typically set to be broad
over the observation space. We marginalize over missed detections
(i.e., times when an object has already arrived but has no association)
which has a closed-form expression for linear Gaussian dynamics.
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The observation model becomes

p(�tn | ztn = k, xt ) =

(
N (�tn | Hxtk ,R) if k > 0
N (�tn | µFP, �FP) o.w.

(4.8)

where the �rst line is a linear Gaussian system with observation pro-
jectionH and observation noise covarianceR. The second line speci�es
the model for clutter detections with prior parameters µFP, �FP, typi-
cally set to be broad.

4.5.4 Joint Distribution

Finally, the joint posterior over trajectories x , associations z and counts
M given observations � is,

p(x, z,M | �) =
p(� | x, z,M) p(x, z,M)

p(�)
(4.9)

=
1
Z

p(� | x, z) p(z | M) p(x | z) p(M) (4.10)

where each term on the RHS is respectively given by Equations 4.6,
4.4, 4.5, and 4.3. The intractable normalization constant Z = p(�) is
not needed for inference. We develop a Metropolis-Hastings sampler
for this non-trivial posterior in Chapter 4.6.

4.6 Inference

Sampling from the posterior distribution in Equation 4.10 is compli-
cated by the constraints of Equation 4.4 and because the number of
association hypotheses grows exponentially inT and factorially in Nt .
With no analytic form and computationally infeasible enumeration of
all hypotheses, we turn to the Metropolis-Hastings (MH) algorithm
[85].

The MH algorithm enables sampling from intractable distributions
by constructing a Markov chain whose unique stationary distribution
is the desired distribution. Samples from this chain converge in dis-
tribution to the desired distribution, regardless of starting state. MH
constructs transition distributions q⇤ that maintain detailed balance,

p(x 0, z 0,M 0 | �)

p(x, z,M | �)
=
q⇤(x 0, z 0,M 0 | x, z,M,�)

q⇤(x, z,M | x 0, z 0,M 0,�)
(4.11)

resulting in a chain where Equation 4.10 is a stationary distribution.
MH accepts a proposed sample (x 0, z 0,M 0) from an arbitrary proposal
distribution q with probabilitymin(1,R)where the normalizers cancel,

R =
p(x 0, z 0,M 0 | �)

p(x, z,M | �)

q(x, z,M | x 0, z 0,M 0,�)

q(x 0, z 0,M 0 | x, z,M,�)
. (4.12)

Metroplis-Hastings is a conceptually simple algorithm to implement.
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Figure 4-4: Examples of each JPT proposal. Left column is the input state (x, z,M) and right column is the output state (x 0, z0,M 0).
Switch proposals can reason over many objects, but are shown here for two. Black points are observations�, encircled in the color
of their association (green or blue for objects; grey for clutter). Example trajectories x are visualized as lines colored according to
their associated object.

The di�culty comes in designing proposal distributions that e�ec-
tively and e�ciently explore the posterior. Following, we design pro-
posals that rapidly explore high-probability regions in the JPT poste-
rior, hopping between di�erent modes (later quanti�ed in Chapter 4.9).
We then describe closed-form Gibbs sampling of joint trajectories con-
ditioned on associations in Chapter 4.6.5.

We design Metropolis-Hastings proposals that make large moves
in the latent space (includingmode hopping) by reasoning over permu-
tations of the latent state over time. JPT proposals are data-dependent—
theymake use of the observations� and current state (x, z,M) in propos-
ing next state (x 0, z 0,M 0). While data-dependent proposals introduce
additional design complexity, here they avoid random exploration and
the use of gating heuristics while retaining tractability. Broadly, JPT
proposals reason over assignment and trajectory permutations between
existing objects (Switch 4.6.1), between a newobject and clutter (Gather
4.6.2, Disperse 4.6.4) or between existing objects and clutter (Extend,
4.6.3). The Switch proposal is a novel generalization of [144] and con-
tributes most to JPT’s exploration of posterior modes; thus we elab-
orate on it more extensively than for the other proposals. Pictorial
examples for each proposal transitioning from state (x, z,M) to state
(x 0, z 0,M 0) are shown in Figure 4-4.

In the following, Hastings ratios do not require the determinant Ja-
cobian used in RJMCMC inference because batch inference �xes the la-
tent dimension even though the number of objects is unknown. There
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are N latent tracks, each of length T , for N total observations over
all time and T timesteps. Each track has 2+ associations (object), 1
association (clutter) or 0 associations (empty). All observations must
be explained by objects or clutter so the posterior may have empty
tracks, but cannot have unexplained observations (e.g., it cannot have
all empty tracks but it can have all clutter tracks).

4.6.1 Switch Proposal

Switch proposals consider possible trajectory and associations permu-
tations between existing objects, and are sampled according to JPT’s
dynamics and observationmodels (Equations 4.5, 4.6). They cause rapid
exploration of di�erent posterior modes when objects are kinemati-
cally ambiguous. Strikingly, the Switch proposal is in many cases au-
tomatically accepted (Rswitch = 1), similar to a Gibbs sampler.

Algorithm 4: Switch Proposal
Input : x, z,M,�
Output: x 0, z 0,M 0

1 Let x 0 = x, z 0 = z
2 Sample object set K ⇢ {1, . . . ,K(z)} s.t. |K | � 2
3 De�ne switch times � = {t : ztn = k for any k 2 K}

4 Set permutations �t as the identity permutation on
(1, . . . ,K(z)) for any t < �

5 for t 2 � in order do
6 Sample valid permutation

p(�t | �1:t�1) / p (�t (xt ) | �1:t�1(x1:t�1)) p (�t | �t (xt ))
7 Let x 0t = �t (xt ), z 0t = �t (zt )
8 Compute countsM 0 from z 0

9 if M 0 = M or rand(0, 1) < min(1,Rswitch) then
10 return x 0, z 0,M 0

11 else
12 return x, z,M

Following Algorithm 4, the Switch proposal samples uniformly at ran-
dom a subset K of existing objects {1, . . . ,K(z)} such that 2  |K | 

K̄ (Line 2) for K̄ a maximum size, discussed below.
Let �t be a valid permutation on objects {1, . . . ,K(z)} at time t .

Valid permutations do not permute objects outside of K : for all k <
K,�t (k) = k . With slight abuse of notation, let �t (xt ) and �t (zt ) re-
spectively represent the trajectory values and associations permuted
according to �t . So for time t , the trajectory value xtk (possibly an
uninstantiated value) and association (possibly none) of object k be-
come the trajectory value and association of object�t (k). De�ne�1:t (x1:t )
over times 1, . . . , t as x 01:t where x

0
t = �t (xt ).

The Switch proposal only considers permutations at times when
at least one object k 2 K has been observed. Let � be all such times
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(Line 3). For any time t < � , set �t as the identity permutation, �t (k) =
k (Line 4).

For increasing time t 2 � , iteratively sample permutation �t condi-
tioned on the previously-sampled permutations �1:t�1 with probability
proportional to the product of the observation and dynamics models
(Equations 4.5, 4.6) evaluated with the appropriate swaps in trajectory
and association values imposed by permutations �1:t (Line 6). There
are |K |! possible values for �t at each time t , but we �nd K̄ = 7 bal-
ances e�cient computation and posterior exploration.

After sampling�t for all t 2 � , we compute new countsM 0 from the
permuted associations z 0 (Line 8) and the Hastings ratio (Line 10) be-
tween (x 0, z 0,M 0) and (x, z,M), noting that Switch proposals are their
own reverse move.

Rswitch =
p(x 0, z0,M 0 | �)

p(x, z,M | �)
⇥
qswitch(x, z,M | x 0, z0,M 0,�)

qswitch(x 0, z0,M 0 | x, z,M,�)
(4.13)

=
p(z0 | M 0)

ŒT
t=1

1
Z p(M 0t | M 0t�1) p(x

0
t | x 01:t�1) p(�t | x 0t , z

0
t )

p(z | M)
ŒT

t=1
1
Z p(Mt | Mt�1) p(xt | x1:t�1) p(�t | xt , zt )

⇥ (4.14)

ŒT
t=1

1
Zt p(�

�1
t (x 0t ) | �

�1
1:t�1(x

0
1:t�1) p(�t | ��1t (xt ),��1t (zt ))ŒT

t=1
1
Zt p(�t (xt ) | �1:t�1(x1:t�1) p(�t | �t (xt ),�t (zt ))

=
p(z0 | M 0)

ŒT
t=1 p(M

0
t | M 0t�1) p(x

0
t | x 01:t�1) p(�t | x 0t , z

0
t )

p(z | M)
ŒT

t=1 p(Mt | Mt�1) p(xt | x1:t�1) p(�t | xt , zt )
⇥ (4.15)

ŒT
t=1 p(xt | x1:t�1) p(�t | xt , zt )ŒT
t=1 p(x

0
t | x 01:t�1) p(�t | x 0t , z

0
t )

=

ŒT
t=1 p(M

0
t | M 0t�1)ŒT

t=1 p(Mt | Mt�1)
(4.16)

where Equation 4.14 substitutes in the values for each term in the ratio,
de�ning ��1t as the inverse permutation of �t and Zt as the normalizer
for the sampled �t at time t (equal to 1 if t < � ). Equation 4.15 sub-
stitutes �t (xt ) for x 0t and ��1t (x 0t ) for xt (similarly for �t (zt )). It also
cancels common normalizers Z for the joint ratio and Zt at each time
t for the proposal ratio. Equation 4.16 cancels all terms related to the
dynamics and observation models, and also cancels p(z 0 | M 0) with
p(z | M) under the assumption that no object k 2 K was rendered
invalid by having fewer than two observations. That can easily be de-
tected and automatically rejected or entirely avoided by de�ning valid
permutations to require the �rst two observed times for any k 2 K to
not be permutable.

The Switch proposal is always accepted (Rswitch = 1) whenever
M 0 = M . This occurs in several situations: when the number of ob-
jects are known in advance, when objects are assumed never to depart,
when there are no missing observations and when all k 2 K are ob-
served atmax� . In many scienti�c and sports analytics applications, it
is common for subjects to never depart. When these conditions don’t
hold, the event counts and Hastings ratio are e�ciently evaluated (lin-
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ear in time T and parallelizable) by only considering terms where the
countsM 0,M di�er. The Switch proposal scales linearly in time T and
factorially in |K |. In practice, we limit the subset size |K |  K̄ .

In Appendix A.4, we show that Switch proposals generalize the
Extended HMM proposals of [144] by proposing a discretization that
depends on the current latent state (in their nomenclature, JPT “pool
states” are permutations of x, z). In their work, sampled discretizations
(or pool states) cannot depend on the current latent state, else detailed
balance is lost. In contrast, Switch proposals depend on the current
latent state and maintain detailed balance.

4.6.2 Gather Proposal

Following Algorithm 5, the Gather proposal considers the formation of
a new object k = 1+K(z) (Line 2) from the set of clutter-associated ob-
servations {�tn : ztn = 0}. Its reverse move is Disperse (Chapter 4.6.4).
Let �0 be the set of times t with at least one clutter association (Line 3).
For increasing t 2 �0, assignments to object k are iteratively sampled
either among observations that are currently associated to clutter or,
with probability � = 0.01, no clutter association to allow for missing
observations. In the former, an association z 0tn = k is �rst sampled
among all clutter observations with probability proportional to Line
6 where t 0 = t � 1 and marginalization occurs between states with
missing associations.

Algorithm 5: Gather Proposal
Input : x, z,M,�
Output: x 0, z 0,M 0

1 Let x 0 = x, z 0 = z
2 Let k = 1 + K(z)
3 De�ne gather times �0 = {t : ztn = 0 for any 1  t  T }
4 for t = min�0, . . . ,max�0 do
5 if rand(0, 1) < � then continue
6 Sample p(z 0tn = k) / p(�tn |xt 0k , z

0
tn = k) I(ztn = 0)

7 Sample
p(x 0tk | x 0t 0k , z

0
tn = k) / p(x

0

tk | xt 0k ) p(�tn | x 0t , z
0
tn = k)

8 Compute countsM 0 from z 0

9 if rand(0, 1) < min(1,Rgather) then return x 0, z 0,M 0

10 else return x, z,M

The Gather proposal has ratio,

Rgather =
p(x 0, z0,M 0 | �)

p(x, z,M | �)
⇥
qdisperse(x, z,M | x 0, z0,M 0,�)

qgather(x 0, z0,M 0 | x, z,M,�)
(4.17)

=
p(z0 | M 0)

ŒT
t=1 p(M

0
t | M 0t�1) p(x

0
t | x 01:t�1) p(�t | x 0t , z

0
t )

p(z | M)
ŒT

t=1 p(Mt | Mt�1) p(xt | x1:t�1) p(�t | xt , zt )
⇥ (4.18)

(K(z) + 1)�1Œ
t 2�0 �t

(4.19)
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where �t = � if z 0tn , k for any n else,

�t =
1
Zt

p(�tn | xt 0k , z
0

tn = k) p(x
0

tk | x 0t 0k , z
0

tn = k)(1 � � ) (4.20)

per Gather algorithm Lines 5–7. All dynamics and observation model
terms cancel in the posterior ratio for objects other than k , but terms
remain for observations that were previously clutter and are now as-
sociated to object k and countsM 0 , M .

4.6.3 Extend Proposal

The Extend proposal is similar to the Gather proposal but rather than
consider permutations between clutter associations and a new object,
it considers permutations between clutter associations and an existing
object. This allows an existing object to resample associations.

Algorithm 6: Extend Proposal
Input : x, z,M,�
Output: x 0, z 0,M 0

1 Let x 0 = x, z 0 = z
2 Sample k 2 {1, . . . ,K(z)}
3 De�ne extend times �k = {t : ztn 2 {0,k} for any 1  t  T }
4 for t = min�k , . . . ,max�k do
5 if rand(0, 1) < � then continue
6 Sample p(z 0tn = k) / p(�tn |xt 0k , z

0
tn = k) I(ztn 2 {0,k})

7 Sample
p(x 0tk | x 0t 0k , z

0
tn = k) / p(x

0

tk | xt 0k ) p(�tn | x 0t , z
0
tn = k)

8 Compute countsM 0 from z 0

9 if rand(0, 1) < min(1,Rextend) then return x 0, z 0,M 0

10 else return x, z,M

Following Algorithm 6, randomly sample object k from existing ob-
jects (Line 2) and iterate over all times t 2 �k with an association to
clutter ztn = 0 or to the current object ztn = k (Line 3). As in the
Gather proposal, skip a resampling of assignments at time t 2 �k with
probability � . Otherwise, sample an association then a trajectory value
(Lines 6-7) with de�nitions as in Gather, except that it is possible for
z 0tn = ztn for some times t (resample the same assignment it had).

By automatically rejecting any Extend proposal that leaves a object
with fewer than two observations, we can ensure that Extend propos-
als are always their own reverse move. As in Gather, the observation
and dynamics terms cancel in the posterior ratio for all objects other
than k , but an accept/reject step must still be computed, and is of sim-
ilar form to the Gather proposal. This proposal has linear complexity
in time T and the number of observations Nt at each time.
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4.6.4 Disperse Proposal

Following Algorithm 7, the Disperse proposal simply chooses an ex-
isting object at random (Line 2), removes all its associations by setting
them to clutter (Line 3) and deletes the trajectory values for that object
(Line 4). It is the reverse move for the Gather proposal. Hence,

Rdisperse = R�1gather (4.21)

where Rgather is de�ned in Equation 4.18. As in the Gather proposal, an
accept/reject step is required. Disperse has constant complexity.

Algorithm 7: Disperse Proposal
Input : x, z,M,�
Output: x 0, z 0,M 0

1 Let z 0 = z
2 Sample k 2 {1, . . . ,K(z)}
3 Set z 0tn = 0 for all t,n such that ztn = k
4 Let x 0 = x \ {xtk }Tt=1
5 Compute countsM 0 from z 0

6 if rand(0, 1) < min(1,Rdisperse) then return x 0, z 0,M 0

7 else return x, z,M

4.6.5 Joint Trajectory Sampling with Missing Data

Joint sampling of trajectories from the full conditional,

p(x | z,M,�) = p(x | z,�) (4.22)

constitutes a �fth MH proposal in the form of a Gibbs sampler where
M is dropped due to independence. Jointly sampling trajectories x |

z,� di�ers from typical �lter- and smoothing-based approaches, which
only provide marginal distributions at each time. If there are no miss-
ing observations, then the full conditional can be sampled as,

p(x | z,�) =
K÷
k=1

T÷
t=1

p(xtk | �k1:t ) p(x(t+1)k | xtk )

p(x(t+1)k | �k1:t )
(4.23)

where p(xtk | �k1:t ) is the �lter distribution of xtk and �k1:t = {�t 0n :
zt 0n = k and t 0  t}. Sampling from this posterior is similar to smooth-
ing [170], except that the backwards pass draws joint samples. Infer-
ence can be done in parallel over objects and, in the linear Gaussian
case, is in closed form with complexity linear in T . For other (possi-
bly non-linear) dynamics or observation models, any procedure that
leaves the joint distribution invariant may be used.

In the case of missing observations, we marginalize over the inter-
vening latent states, realizing samples only at times where an object
has an association. Thus, the distribution for xtk under the joint (the
numerator of Equation 4.23), assuming that the most recent previous
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association occurred at time Æt  t and most recent future association
at time Æt > t , is:

p(xtk | �k1: Æt ) p(xÆtk | xtk ) = (4.24)π
p(x

( Æt+1:t )k | �k1: Æt )dx( Æt+1:t�1)kπ
p(x

(t+1:Æt )k | xtk )dx(t+1:Æt�1k )

We emphasize that the �rst term in Equation 4.24 integrates over past
missing states. If there is an association at time t (i.e., Æt = t ), then there
is no integration to carry out in the �rst term and so it simpli�es to
p(xtk | �k1:t ). Similarly, the second term in Equation 4.24 integrates over
future missing states. If Æt = t + 1 then there is no integration to carry
out in the second term and so it simpli�es to p(x(t+1)k | xtk ). Hence,
when Æt = t + 1 and Æt = t , we recover the numerator of Equation 4.23.

4.7 Uncertainty Reduction

Tracking is increasingly used in scienti�c applications where man-
ual observation does not scale and cannot be crowdsourced due to
privacy or expertise [7]. Datasets can be over 500 hours long [130].
Tracks are used as input to hypothesis tests about di�erences in be-
havior with respect to genetics or neural activity [233]. Most track-
ers provide point estimates and incur many identity switch errors on
benchmark datasets like theMOTChallenge [136]. Errors propagate to
hypothesis tests and corrupt conclusions. We do not expect the Joint
Posterior Tracker to be error-free; instead, we have designed it to ac-
curately quantify posterior uncertainty, which enables conclusions to
be correctly weighted and can be used for additional tasks.

We extend the Joint Posterior Tracker so that it can automatically
locate ambiguities in the data by �nding posterior samples with con-
�icting interpretations. Ambiguities can be sequentially resolved by
asking a series of questions to an oracle. Arguably the most common
ambiguities inmulti-object tracking occur from identity switches, where
two or more targets become confused. If identity switches can be re-
solved by a series of automatically-scheduled questions then we ex-
pect that posterior uncertainty would diminish with each question
while estimates of track quality would improve when compared to a
groundtruth. To build automatic track re�nement into the Joint Poste-
rior Tracker, we de�ne an annotationmodel and use sequential Bayesian
Experiment Design to reason over which questions to ask. Questions
are posed as possible experiments (also called designs) to perform,with
the best experiment being identi�ed by the optimization of a utility
function. We optimize mutual information (MI), which quanti�es the
expected reduction in posterior uncertainty that results from the an-
swer of a single question.
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Let � = (t,n) be the time and observation indices that uniquely
identi�es observation �tn . A design then corresponds to a tuple of
these index pairsd = (�1,�2). We abuse notation and let�1(d) = (t1,n1)
indicate the �rst pair in design d such that ��1(d ) = �t1n1 and z�1(d ) =
zt1n1 and likewise for �2(d). The annotation indicates if two observa-
tions�t1n1,�t2n2 belong to the same or di�erent objects –al (�t1n1,�t2n2) =
1 or 0 respectively – and is correct with probability pa = 0.99. This
event corresponds to whether the assignments zt1n1, zt2n2 share the
same non-zero value – recall ztn = 0 indicates clutter. After accounting
for the annotation noise and design, we have the following annotation
likelihood

pd (al = 1 | x,�, z,M) = pd (al = 1 | z�1(d ), z�2(d )) = (4.25)(
0.99 if z�1(d ) = z�2(d ) and z�1(d ) > 0
0.01 o.w.

When conditioned on just the two assignments z�1(d ), z�2(d ), the an-
notation is independent of the remaining variables in the model; this
yields the �rst equality in Equation 4.25. This conditional is added to
the joint distribution p(x,�, z,M), yielding an augmented generative
model that now includes annotations.

Mutual information between the annotation al and the latent tra-
jectories x conditioned on the observations � and past annotations
D = {a1:l�1,d1:l�1} is given by,

Id (al ;x | �,D) = E


log

pd (al , x | �,D)

pd (al | �,D)pd (x | �,D)

�
(4.26)

= E


log

pd (al | x,�,D)

pd (al | �,D)

�
(4.27)

We use a greedy approach to Sequential BED, wherein we select the
highest MI design within each round of BED. While myopic, this ap-
proach avoids the complexity associated with searching for an optimal
policy. Thus, at the l th�round of sequential BED, we seek

dl = argmax
d

Id (al ;x | �,D). (4.28)

We typically cannot evaluate MI in closed form and instead resort
to Monte Carlo estimation usingM samples drawn from the posterior
{aml , x

m, zm}
M
m=1 ⇠ p(al , x, z | �,D):

Ĩd =
1
M

M’
m=1

log
pd (aml | xm,�,D)

pd (aml | �,D)
(4.29)
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To evaluate the likelihoods in Equation 4.29, �rst we expand them as,

pd (a
m
l | xm,�,D) =

’
z
pd (a

m
l | z, xm,�,D) p(z | xm,�,D) (4.30)

=
’

z�1(d ),z�2(d )

pd (a
m
l | z�1(d ), z�2(d )) (4.31)

p(z�1(d ), z�2(d ) | x
m,�,D)

pd (a
m
l | �,D) =

’
z
pd (a

m
l | z,�,D) p(z | �,D) (4.32)

=
’

z�1(d ),z�2(d )

pd (a
m
l | z�1(d ), z�2(d )) (4.33)

p(z�1(d ), z�2(d ) | �,D)

Equation 4.31 can be evaluated exactly because we can obtain,

p(z�1(d), z�2(d ) | x
m,�,D) (4.34)

through enumeration of all pairwise assignments conditioned on the
sampled trajectoriesxm and observations�. Equation 4.33, on the other
hand, requires pd (aml | �,D) which is intractable, so we again use
Monte Carlo estimation,

p̂d (a
m
l | �,D) =

1
M

M’
m0=1

pd (a
m
l | zm

0

�1(d ), z
m0
�2(d )). (4.35)

Our MI estimator is then,

Îd =
1
M

M’
m=1

log
pd (aml | xm,�,D)

p̂d (aml | �,D)
(4.36)

where pd (aml | xm,�,D) is given in Equation 4.31 and p̂d (aml | �,D) is
given in Equation 4.35.

4.8 JPT Compared to MCMCDA

Both batch MCMCDA and JPT are Bayesian treatments of the general
multi-object tracking problem, but exhibit fundamental di�erences.
First, batch MCMCDA de�nes a marginal posterior over associations.
Each association event in MCMCDA induces a marginal distribution
over trajectories at each time. In contrast, JPT de�nes a joint posterior
over associations and trajectories over all times.

Second, both batch MCMCDA and JPT use exact MCMC inference,
but MCMCDA samples uniformly at random from a graph that con-
nects observations based on spatiotemporal gating heuristics de�ned
in Equation 27 (page 492) and visualized in Figure 6 (page 490) of [153].
These heuristics, d and �̄ are limits on the maximum number of times
an object can go unobserved and the maximum distance an object can
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travel between times. If set too low, these heuristics will cause MCM-
CDA to create many new objects for what is actually a single object.
If set too high, MCMCDA inference will devolve into a random search
that fails to converge (observed based on the grid search conducted in
Chapter 4.9.3). Besides requiring tuning for good performance, MCM-
CDA heuristics limit its ability to represent the con�guration space of
object associations.

In contrast, JPT inference uses no heuristics and can represent the
entire con�guration space; it is e�cient because it reasons locally over
permutations in object associations using its forward model. Speci�-
cally, the Gather, Extend, and Disperse proposals do not depend on
the number of objects. Gather and Extend have linear complexity in
time and observation count whereas Disperse has constant complex-
ity. The Switch proposal depends factorially on the number of objects
present, but any single Switch move is kept manageable by only con-
sidering subsets of objects. Repeated Switch moves may cover all ob-
jects without incurring the cost of doing so all at once. Trajectory
sampling has linear complexity in time and the number of objects.
Chapter 4.9.4 directly shows evidence of JPT’s e�cient traversal of
object-association space; in particular, it uncovers many more poste-
rior modes than MCMCDA for the same number of posterior samples.

Finally, both batch MCMCDA and JPT can represent posterior un-
certainty. But as we show in Chapter 4.9.4, JPT quanti�es uncertainty
much more accurately than MCMCDA.

4.9 Evaluation

Our experiments are designed to highlight the importance of accurate
uncertainty quanti�cation and the tracking performance of JPT when
compared to existing methods. We begin by describing the datasets
used in Chapter 4.9.1, including a novel primate dataset. We then ex-
plain the dynamics and observation models common to each method
in Chapter 4.9.2. Our e�orts to make the comparison as favorable to
MCMCDA as possible are discussed in 4.9.3.

Following, we compare JPT to batch MCMCDA in terms of mode
exploration in Chapter 4.9.4. In Chapter 4.9.5 we show that JPT outper-
forms both MCMCDA and an optimization-based tracker (MHT) [109]
on large science and sports datasets.28 Lastly, we use the more accu- 28 MHT was chosen for comparison be-

cause it is a classical approach and also
because it has known performance on
the MOT Challenge when paired with
deep appearance features. MHT’s per-
formance in Chapter 4.9.5 grounds the
performance of other baselines on our
datasets.

rate uncertainty quanti�cation of JPT to generate targeted queries to
a noisy oracle (e.g., a human annotator) yielding signi�cant improve-
ment to trajectory quality (4.9.6). Throughout, JPT and MCMCDA are
run for 5 replicates (Markov chains), each time drawing 2000 samples
and discarding the �rst half as burn-in. For fair comparison, nomethod
uses appearance information.
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4.9.1 Datasets

K33 is a synthetic dataset containing ambiguous object crossing events.
There are no clutter detections and all objects are detected at all times.
The true outcome is randomly sampled from one of the 24 modes.

Marmoset contains two primates interacting in a laboratory en-
vironment over long periods of time where there are many total and
partial occlusion events, as well as occasional clutter detections. Noisy
observations are generated as the centroid of the detections from a
trainedMask-RCNNneural network [90] and groundtruth accomplished
by human annotation that correctlymaintains object identities through-
out the sequence. As a result, trackers must correctly re-identify ob-
jects that have been occluded to avoid getting penalized.

Soccer observations are the unassociated centers of players and
referee. Groundtruth does not maintain track identities when players
go out of frame. Consequently, re-identi�cation of objects after a total
occlusion (e.g., moving out of frame) are not rewarded.29 It is evaluated 29 This accords with MOT Challenge

datasets whose groundtruths also do
not re-identify objects that go out of
frame and return.

in chunks of 20 frames according to the protocol in [199].

4.9.2 Dynamics and Observation Models

All experiments use a random acceleration model with a 2D obser-
vation space. Hence, the latent space is 4-dimensional: 2 for position,
and 2 for velocity. The dynamics and observation noise covariances are
set according to the expected value of data-dependent Inverse-Wishart
priors based on the per-time variances of the observations and the
between-time, nearest-neighbor distances of observations.

Appearance modeling could be added to JPT without modifying
any equation by augmenting the observation and latent spaces with
appearance information, such as from deep neural network features
or histograms counts of pixel colors. Uncertainty quanti�cation is the
focus of this work; hence, appearance was not used for any of the com-
pared methods.

4.9.3 MCMCDA Gating Heuristic Grid Search

The MCMCDA baseline contains two gating heuristics: thresholds on
�̄ , the maximum L2 spatial and d , the maximum L1 temporal distances
between two observations belonging to the same track. Although they
can be removed by setting the thresholds very high, this causes the in-
ference procedures of MCMCDA to devolve into random exploration,
severely damaging performance according to CLEAR MOT metrics.
To make the comparison with JPT as competitive as possible, we per-
formed a grid search over each gating threshold, as well as providing it
with knowledge of the true number of objects or not, and restricted JP-
T/MCMCDA comparisons so that MCMCDA only used the parameters
with best performance as measured by the CLEAR MOT multi-object
tracking accuracy (MOTA) metric.
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For MCMCDA on the K33 dataset, the best-performing spatial gat-
ing threshold was �̄ = 6 and the best temporal gating threshold was
d = 1. For Marmoset and Soccer, the best-performing spatial gating
threshold was �̄ = 20 and best-performing temporal gating threshold
was d = 6. In all cases, MCMCDA performed best without knowledge
of the true number of objects because this knowledge could limit its
ability to explore by creating excess objects that it later destroyed. In
some cases, it would also cause MCMCDA to be severely penalized
by occlusion events that persisted for longer than its temporal gating
threshold as it could either represent the object before or after the oc-
clusion, but not both.

Increasing the gating thresholds to very large numbers caused ran-
dom exploration of low-probability events in the MCMCDA posterior
due to theway its inference is constructed. Speci�cally, MCMCDApre-
computes a sparse graph of paths between observations that respect
its gating thresholds. It then computes Metropolis-Hastings propos-
als that randomly sample from this graph on the assumption that the
thresholds were set to encourage likely associations. Thus, MCMCDA
inference has a fundamental limitation: either gating thresholds are set
tight and some true association hypotheses are excluded, or they are
set loose and random exploration occurs.

4.9.4 Representation of Posterior Uncertainty

Consider the K33 dataset in Figure 4-5 (Top). Three objects begin sep-
arated but become ambiguous after each of three confusion events
(yellow shading). Observe that for k ambiguously proximate objects,
there will be k! possible outcomes. Figure 4-5 (Bottom) shows the 24 =
2! 2! 3! modes that a tracker would ideally explore in this dataset.

We investigate whether JPT and MCMCDA e�ectively explore the
24 modes of the K33 dataset by observing posterior trajectory vari-
ance for each Markov chain in Figure 4-1. JPT captures the uncertainty
from each ambiguous region; for example, red and green cross in some
posterior samples but not in others. In contrast, MCMCDA is overcon-
�dent: it fails to represent any uncertainty in either of the �rst two
ambiguous regions, and is only partially successful in the �nal region.
Not only is MCMCDA overcon�dent, it is wrong as will be shown by
tracking metrics in (4.9.5).

We quantify mode exploration by matching each posterior sam-
ple from JPT and MCMCDA to the nearest of the 24 likely outcomes.
Details of this matching procedure are below. Figure 4-6 shows his-
tograms of modes matched by JPT and MCMCDA in di�erent Markov
chains. JPT represents every outcome within each Markov chain while
MCMCDA captures at most 2 but usually 1 outcome in a singleMarkov
chain. Noting that the ideal distribution over the 24 matched modes
would be uniform, we compare total variation (L1) distance between
that and the empirical distributions of matched modes for JPT and
MCMCDA (Figure 4-7), plotted as a function of sample count. While
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MC 1 MC 2 MC 3 MC 4 MC 5

Figure 4-6: Histograms of the modes explored by JPT (Top) and MCMCDA (Bottom)
in 5Markov chains. JPT explores all modes in each chain while MCMCDA gets stuck
in 1–2.

the total variation resulting from JPT’s is nonzero, it is signi�cantly
lower than that of MCMCDA. Examination of Figure 4-1 (Top) reveals
that JPT exhibits a moderate bias between upper and lower paths af-
ter the �rst ambiguous region. Nevertheless, JPT represents all modes
whereas MCMCDA rarely represents more than one.

2!

2!
3!

Figure 4-5: The K33 dataset. Observa-
tions over time (Top) with yellow shad-
ing for ambiguous regions and a joint
trajectory sample from the 24 = 2! 2! 3!
posterior modes (Bottom), each re�ect-
ing a possible outcome.

Figure 4-7: Total variation distance be-
tween the true distribution of modes
on K33, and the histograms of matched
modes for JPT and MCMCDA samples.

ComputingDistancesBetweenAssociationHypotheses Tomatch
an inferred set of trajectories to another set of trajectories, we begin
with the Spatiotemporal Linear Combine (STLC) Distance of [184],
which compared favorably in [190]. Brie�y, STLC evaluates trajecto-
ries on both their L2 spatial and L1 temporal alignment; it supports
uneven sampling rates and arbitrary trajectory start/end times. It is a
similarity measure that ranges from [0, 2], but we convert it to a cost
by inverting the limits.

Given STLC as an object-to-object cost, we de�ne a distance be-
tween multi-object tracking association hypotheses by using discrete
optimal transport [188], where the cost matrix is �lled with the STLC
costs of each object pair between the two samples. Note that this sup-
ports arbitrary numbers of objects in each sample. This distance was
then used in determining mode representation in posterior samples of
JPT and MCMCDA in the Uncertainty Quanti�cation experiments and
again in the Uncertainty Reduction experiments, where we demon-
strated that planned annotations rapidly reduce the distance of JPT
samples to the groundtruth.
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Figure 4-8: CLEAR MOT metrics for JPT, MCMCDA and MHT on datasets K33, Mar-
moset and Soccer. (Left), higher is better; (Right), lower is better.
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Figure 4-9: Example tracking on Marmoset for JPT (Top) and MCMCDA (Bottom). The upper primate (green, �rst column) goes
under the shelf (second column) and is correctly re-identi�ed when it emerges (last column) by JPT but not MCMCDA. The lower
primate (blue, �rst column) rapidly traverses the branch, with stable associations for JPT but not MCMCDA.

4.9.5 Performance on Real and Synthetic Data

Wecompare tracking performance of JPT,MCMCDAand an optimization-
based tracker [109] (MHT) on three datasets: the K33 dataset (39 timesteps,
3 objects, 117 observations), a scienti�c dataset Marmoset of primate
interactions (15k timesteps, 2 objects, 25k observations), and the sports
dataset Soccer (1.5k timesteps, 22 objects, 12k observations). Marmoset
containsmany long-term occlusions fromprimates going under shelves
or into their nest while Soccer containsmany player-player occlusions.
More details of each dataset are in Chapter 4.9.1.

Figure 4-8 shows performance as evaluated by standard CLEAR
MOT [23] metrics that account for identity switches (objects are con-
fused), fragmentations (two inferred objects explain one actual object)
and misses (failure to correctly assign an observation to some object).
Multi-object tracking accuracy (MOTA) is a summary statistic com-
monly used to compare trackers,

MOTA = 1 �
ÕT

t=1 FNt + FPt + IDtÕT
t=1 GTt

(4.37)

where FN, FP, ID, and GT are misses, false positives, identity switches,
and true positives, respectively. Boxplots are provided for JPT andMCM-
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Figure 4-10: Example tracks for 20 frames on Soccer for JPT (Left) and MHT (Right).
Both track players reasonably well butMHT hasmore fragmentations (multiple tracks
corresponding to a single object, e.g., the top-left player).
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Figure 4-11: Two JPT samples (A, B) showing ambiguity captured due to missed detections (column 2) when objects are close.

CDA posterior samples but, being deterministic, MHT only provides a
point estimate. JPT outperforms MCMCDA and MHT on all datasets
and metrics with notably fewer identity switches, fragmentations and
misses. Given theMCMCDA gating heuristic, we report its best-scoring
MOTA from a grid search over parameter values. Details of the grid
search are in Chapter 4.9.3. Figure 4-9 demonstrates that JPT can re-
identify objects in Marmoset after long-term occlusions because it is
not limited by gating heuristics as MCMCDA is. Figure 4-10 demon-
strates that JPTmaintainsmore stable tracks than doesMHT on Soccer
where there are dense numbers of objects.

4.9.6 Automatic Reduction of Posterior Uncertainty

We demonstrate JPT in an active-annotation application. The goal is to
curate initial trajectories with a small number of targeted annotations
to achieve high-quality trajectories, e.g., as might be required for long-
term motion analysis. Targeted annotations will eliminate modes, but
only if they are identi�ed by the inference procedure to begin with.
As we note in the �rst experiment, MCMCDA generally �nds a sin-
gle mode while ascribing near certainty to that mode, i.e., there is no
mechanism for identifying and removing potential ambiguities. Supe-
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Figure 4-12: Reduction in JPT posterior uncertainty from scheduled annotations. JPT
(magenta) asks informative questions that rapidly remove ambiguities in tracking es-
timates. In contrast, annotations scheduled with a poor model of uncertainty (green)
fail to reduce posterior uncertainty.

Figure 4-13: Improvement in JPT trajectory estimates from scheduled annotations. JPT
(magenta) asks informative questions that rapidly improve posterior trajectory esti-
mates. In contrast, annotations scheduled with a poor representation of uncertainty
(green) fail to improve trajectory quality.
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rior uncertainty modeling via JPT allows informative annotations to
be readily identi�ed yielding quality trajectories with very few anno-
tations.

Let there beL annotationsa = {al }Ll=1where each indicateswhether
two observations �t1n1,�t2n2 belong to the same or di�erent objects:
al (�t1n1,�t2n2) = 1 or 0. Assume each annotation is correct with proba-
bility pa = 0.99. Intuitively, informative annotations are related to ob-
servations that are outside an ambiguous region as these lead to mode
elimination. We use Sequential Bayesian Experimental Design (SBED)
for automated selection of informative observation pairs over L an-
notation rounds where utility is quanti�ed by the mutual information
(MI) [24] between a prospective annotation and the latent trajectories.
Further details are provided in Chapter 4.7.

We perform 5 replicated experiments on the K33 dataset, each with
10 rounds of annotation. The �rst round starts with no annotations;
successive rounds add an annotation. We compare using JPT’s un-
certainty representation (JPT, magenta) to a baseline (Equal, green)
where all annotations are equally informative (i.e., planning with a
poor model of uncertainty or none at all). Figure 4-12 compares reduc-
tion in posterior trajectory uncertainty between the methods, com-
puted as trajectory variance summed over all times and samples. JPT
yields informative annotations that rapidly reduce uncertainty until
it reaches a �oor by Round 5. Similarly, Figure 4-13 plots trajectory
distance to the groundtruth as a function of annotation round. These
results show that a small number of targeted annotations enable rapid
improvements in track quality as a direct consequence JPT’s accurate
uncertainty representation.

4.10 Conclusion

We propose JPT, a Bayesian solution to the general (i.e., batch) multi-
object tracking problem (Chapter 4.5). We construct e�cient inference
to reason over permutations of associations (Chapter 4.6) and empir-
ically demonstrate that JPT more e�ectively represents posterior un-
certainty than baselines (Chapter 4.9.4) while outperforming them on
standard tracking metrics (Chapter 4.9.5). We then show that JPT’s ac-
curate representation of uncertainty enables automatic scheduling of
informative disambiguations which rapidly drive down posterior un-
certainty while improving trajectory quality (Chapters 4.9.6, 4.7).

We believe that pairing accurate uncertainty quanti�cation with
automatic error recovery will enable multi-object tracking to be de-
ployed in scienti�c domains such as animal behavior where common
identity switching errors may otherwise corrupt conclusions drawn
fromhypothesis testing. Other approaches to reducing identity switch-
ing exist: namely, to manually inspect and re�ne track estimates as in
[134] or to use uniquely-colored tags for each tracked target. Manual
inspection and re�nement of tracks is laborious. We use colored tags
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for animal tracking in Chapter 5.3.1. Tagsmay be colored vests, painted
dyes, or surgically implanted markers. Tags have limitations, however:
not all animals can be out�tted with vests, dyes wear o� over time, and
observations may involve the addition of new subjects, as from birth.
Experiments should be designed to reduce uncertainty where it is pos-
sible to do so.Where uncertainty cannot be reduced, the Joint Posterior
Tracker provides an approach that minimizes human labor.

Data association uncertainty could be reduced by incorporating
parts modeling such as from Chapter 3.4 and by incorporating visual
appearance models, both learned and pre-speci�ed (as when tags are
available). Learning a decision rule for scheduling disambiguations that
is supervised by the more expensive, quadratically-scaling mutual in-
formation estimator (Equation 4.36) could accelerate the time it takes
to compute successive annotation questions. Finally, scene modeling
could improve reasoning under long-term occlusions, and could be in-
corporated into the model by making the arrival, departure, detection,
and clutter probabilities dependent on scene location.
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Chapter 5

Primate Behavior Analysis

5.1 Approach
5.2 Contributions
5.3 Autism in Macaques
5.4 Marmoset100 Behavior Dataset
5.5 Behavior Classi�cation
5.6 Related Works
5.7 Conclusion

Ethologists study the behavior of animals, including modeling rela-
tionships with respect to genetics, neural activity, and lifetime devel-
opment [194]. For the purposes of this work, behavior can be low-level
kinematics (e.g., position, pose) or high-level activities (e.g., groom,
chase). Figure 5-15 lists high-level behaviors analyzed in this work
while low-level behaviors are modeled bymulti-object tracking (Chap-
ters 4.5, 5.3.1). In observational settings, scientists discover new be-
haviors or document relationships between known behaviors and the
environment, such as their frequency and composition. In experimen-
tal regimes, scientists seek support for or against a hypothesis by as-
signing participants to treatments that correspond to levels of control
exerted on the environment. Both observational studies and experi-
mental designs require substantial human labor to conduct.

The study of behavior often requires scientists to observe hun-
dreds of hours of data (often video), manually annotating timestamped
events. The scope and scalability of these studies is limited because
annotations are time-consuming (542 hours in a recent study [130])
and cannot be crowdsourced due to a need for privacy and expertise.
Analysis is limited to behaviors and phenomena that scientists can di-
rectly and reliably perceive. Furthermore, analysis cannot be done in
realtime or at all times, reducing many investigations to observational
studies or else limited experimental designs, where interventions are
manually performed at discrete points.

Automating aspects of behavioral analysis enable larger-scale and
perhaps novel experiment designs. Calls for video tracking of multi-
ple objects and classi�cation of high-level behavior have been issued
[7, 48] and are beginning to be answered but many of these approaches
use representations that are di�cult to interpret and relate to output
estimates. They also tend to produce a single inference result, such as
a single set of motion trajectories over time or a single behavior clas-
si�cation result [134, 77, 160, 133]. Multi-object tracking is prone to
identity switching errors [136] and classi�cation based on deep repre-
sentations is prone to miscalibration [80]. We do not expect models to
achieve error-free performance in most settings. Yet, relying on single
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estimates that are likely to be wrong at least some of time is equally
unsatisfying.

Uncertainty measures con�dence in an estimate and can be used
to draw attention to ambiguities in the data. Ambiguities can be ex-
ploited to identify and recover from potential mistakes (Chapter 4.7).
As we will show in Chapters 5.5.3, 5.5.4, data ambiguity as represented
by model uncertainty can also be exploited to improve high-level be-
havior classi�cation performance.

Probabilistic analysis of behavior can assist in studying and iden-
tifying animal models of disease and have proven bene�cial to the de-
velopment of human treatments and cures [186]. As an example con-
sidered in Chapter 5.3, mutation in the SHANK3 gene is associated
with autism spectrum disorder and Phelan-McDermid syndrome in
humans [138, 161]. Abnormal behaviors including reduced social in-
teraction, motor impairment, repetitive grooming, and self-injury have
been observed in mice with the SHANK3 mutation [101]. Yet, mice are
not ideal animal models for human social disorders [18]. Evidence that
links SHANK3 mutations in primates to autism-like behaviors would
equip scientists with a primate animal model for autism that is more
socially and genetically relevant to humans [18]. Consequently, as out-
lined in Chapter 5.1, this work examines observational and experimen-
tal behavior data collected in collaboration with biologists and spans
two types of primates: macaques and marmosets.

5.1 Approach

Chapter 5.3 develops theNonparametric ExtentsModel (NPE), a Bayesian
nonparametric multi-object tracker that infers the positions and per-
observation associations over time of multiple objects. NPE combines
multi-object tracking and a simple form of parts modeling that later
motivated the development of the Nonparametric Parts Model (Chap-
ter 3.4) and Joint Posterior Tracker (Chapter 4.5).

NPEmodels themotion ofmultiple objects in a state spacewith lin-
ear dynamics. It samples per-observation object associations by com-
bining an explicit background model with an object likelihood based
on a Dirichlet Process Gaussian Mixture [60, 12] observation model.
Mixture components correspond to object parts, or extents, which NPE
uses to infer object centroids over time. Rauch-Tung-Striebel [170] smooth-
ing provides �nal track estimates for each set of sampled object associ-
ations. The Augmented Nonparametric Extents Model (Chapter 5.3.2)
additionally models per-object appearance.

We apply NPE tracking to more than 100 hours of video data in
an experimental setting. The experiment asks whether SHANK3 gene
mutations in macaque primates cause autism-like behaviors such as
social and motor impairment. Tracked videos are repeated trials of
pairwise social interaction between primates with and without the
SHANK3 gene mutation. We quantitatively evaluate performance on
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a subset of data manually labeled for object trajectories and provide
tracking estimates to collaborators for further analysis.

Chapter 5.4 describesMarmoset100, a 100-hour observational dataset
of primate behaviors. Marmoset100 consists of 48 RGB, depth, and
audio recordings that collectively contain more than 9 million video
frames. Collaborators record this data using software I developed; they
additionally label a 31-hour subset for 25 high-level behaviors (Chap-
ter 5.4.4).

We �nd that NPE tracking is not robust to background variation or
primate occlusions in Marmoset100. In response, Chapter 5.4.2 trains
a pixel-accurate marmoset detector for use as input to JPT tracking
(Chapter 4.5).We computemarmoset detections and perform JPT track-
ing on all Marmoset100 data.

Chapter 5.4.3 directly compares JPT tracking performance onMar-
moset100 toMulti-Animal DeepLabCut (DLC) [117, 134], a popular ap-
proach used in animal tracking. JPT and DLC are both tracking-by-
detection approaches. JPT supports arbitrary object representations
whereas DLC exclusively works with an object pose representation.
We hold the training data available to JPT’s object detector and DLC’s
pose estimator constant for equal comparison and show that JPT sig-
ni�cantly outperforms DLC.

Chapter 5.5 performs supervised, multilabel behavior classi�cation
of the Marmoset100 behaviors described in Chapter 5.4.4. We perform
multi-object tracking on input videos using varying representation
(centroid point, object contour, skeletal pose), and presence (JPT) or
absence (DLC) of uncertainty in tracking estimates. Behavior classi�-
cation takes multi-object tracks as input and independently estimates
each behavior. We quantitatively demonstrate that uncertainty repre-
sentation improves average behavior classi�cation performance and
that simple, point-based object representations outperform complex,
pose-based object representationswhen the point trajectories aremore
accurate motion estimates.

5.2 Contributions

Our automated Nonparametric Extents tracking (Chapter 5.3) saved
scientists from labeling the positions of primates in over 100 hours
of video in an experimental setting, a task that reportedly takes 133%
video time per object for point trajectories, evenwhen using an e�cient
annotation interface (cf. Section 5, Figure 6 and Supplemental Section 1
of [132]).30 30 The total time saved for point tra-

jectory annotation is 266 hours. The
Nonparametric Extents Model provides
per-pixel object associations, however.
[132] shows signi�cantly longer anno-
tation for bounding boxes over point
trajectories but does not consider per-
pixel associations, which presumably
take even longer.

Analysis by collaborators of Nonparametric Extents tracking (NPE)
estimates on pairwise macaque interactions contributed to the �rst ex-
perimental evidence that SHANK3 gene mutations cause autism-like
behaviors in macaques (Chapter 5.3.4) and was published in [233].

Per-pixel marmoset detections, JPT multi-object tracking results,
and labeled behaviors combine to form a novel, terabyte-scale RGB-
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Depth dataset of marmoset behavior in home cage settings (Chap-
ter 5.4). Our automated detection and tracking facilitate per-pixel la-
beling of more than 9 million video frames (Chapter 5.4.2).

Quantitative evaluation of JPT (Chapter 4.5) andDLC tracking [134]
on a subset of Marmoset100 data demonstrates that JPT produces su-
perior performance when its underlying object detections are trained
on the same data as DLC pose estimates (Chapter 5.4.3).

Chapter 5.5 studies how multi-object tracking representation and
the presence of uncertainty in tracking estimates a�ect follow-on be-
havior classi�cation performance. In Chapter 5.5.4, we quantitatively
demonstrate that:

• Behavior classi�cation is improved by uncertainty representa-
tion in tracking estimates, regardless of object representation,

• Behavior classi�cation based on JPT tracking outperforms be-
havior classi�cation based on DLC tracking, evenwhen JPT only
uses less informative point-based object representations with no
uncertainty (as compared to DLC’s pose representation),

• Behavior classi�cation based on a simple, point-based object rep-
resentation with uncertainty on average outperforms behavior
classi�cation with a complex, contour-based object representa-
tion without uncertainty,

• Behavior classi�cation based on complex, contour-based object
representation outperforms behavior classi�cation based on sim-
ple, point-based object representation when both approaches ei-
ther do or do not have access to uncertainty.

JPT’s superior multi-object tracking performance and follow-on be-
havior classi�cation compared to DLC on Marmoset100 suggest that
the animal behavior community is likely to bene�t by adopting ap-
proaches, such as JPT, that represent uncertainty in tracking estimates.

5.3 Autism in Macaques

We develop the Nonparametric Extents Model, a generative, nonpara-
metric model for multi-object tracking that directly uses 2D pixels or
3D RGB+Depth points to model object and background associations
(Chapter 5.3.1). We then specialize it to the Augmented Nonparametric
Extents Model (Chapter 5.3.2), which can incorporate target-speci�c
appearance. Chapter 5.3.3 describes inference in both models. Finally,
in Chapter 5.3.3, we deploy the Augmented Nonparametric Extents
Model in a large-scale, controlled experiment on pairwise behavior in
primates and provide quantitative and qualitative performance evalu-
ation on experimental data.

113



5.3.1 Nonparametric Extents Model

The Nonparametric Extents Model (NPE) tracks the motion and shape
of a known number of objects over time. Objects are naively modeled
as a body centroid with linear Gaussian dynamics and a collection of
Gaussian components that are independent across time, conditioned
on object centroid. Within a frame, components may correspond to
object parts, but they do not capture part persistence or part dynamics
over time. We call these components, “extents.” Table 5.1 summarizes
NPE notation.

NPE allows objects to claim more than one observation at each
time t = 1, . . . ,T . It nonparametrically estimates the body centroids
and extents of a known number of objects over at each time. The like-
lihood is,

p(�tn | ztn,bn, �t ) = (5.1)

N (�tn | bn, �B)
I(ztn=0)

1÷
p=1

N
�
�tn | µtp, �tp

� I(ztn=p)

which forms an in�nite mixture model for each observation n if asso-
ciations zn are marginalized out. Object components �t = {�tp }1p=1 are
independent across time, conditioned on object centroid trajectories xt

for each observation n, is an in�nite mixture model over compo-
nents �t = {�tp }1p=1 and a per-observation static background model bn
with shared covariance �B . Components are indexed by p and inter-
preted as object extents that collectively form a nonparametric density
estimate for each object. Components are generated as,

p(µtp | �tp, xtk ) = (5.2)

Unif
�
µtp | U0

� I(�tp=0) K÷
k=1

N
�
µtp | H xtk , �X

� I(�tp=k )
p(�tp | �tp, xtk ) = (5.3)

IW
�
�tp | �0, S0

� I(�tp=0) K÷
k=1

IW
�
�tp | �, St

� I(�tp=k )

Variable Description
xtk 2 R

dx Trajectory
�tn 2 Rd� Observation
ztn Observation association
�tp Component/part
µtp Component mean
�tp Component covariance
�tn Component association
bn Background model
t � 1 index for time
k � 1 index for objects
p � 1 index for components
n � 1 index for observations

Table 5.1: Nonparametric Extents
Model notation.

where xtk is the position and velocity of object k at time t , �X is
the shared covariance about which objects generate components, U0
is a uniform region over the observation space that explains “clutter”
components, andH projects object position from the the latent space to
component space. Clutter components have broad, uncertain Inverse-
Wishart priors with parameters (�0, S0) while object components have
weak data-dependent Inverse-Wishart priors with parameters (�, St )
estimated at each time over non-background observations:

St =
N’
n=1

�tn �
>

tn I(ztn > 0) (5.4)
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Figure 5-1: The Nonparametric Extents graphical model where t 0 = t + 1. Body cen-
troids xtk are tracked for k = 1, . . . ,K objects over times t = 1, . . . ,T . Object compo-
nents �tp are independently and nonparametrically estimated at each time t and as-
sociated to objects or clutter according to component associations �tp . Observations
�tn for n = 1, . . . ,N are independently associated to background or to components
at each time t according to observation associations ztn .

NPE has two sets of associations at each time: ztn = p associates ob-
servation �tn to background if p = 0 or to an object component p > 0.
�tp = k associate component �tp to clutter if k = 0 or object k if
k > 0. We emphasize that there is a separate background model for
each observation n and a single clutter model for all components p.
Associations are generated as,

p(�tp ) = Cat
�
�tp | (K + 1)�1, . . . , (K + 1)�1

�
(5.5)

p(ztn | �t ) = Cat(ztn | �t ) (5.6)
p(�t | �) = GEM(� | �) (5.7)

(5.8)

for stick-breaking weights � and Dirichlet Process concentration pa-
rameter � (Chapter 2.4). Observe that the associations of parts to ob-
jects �tp have uniform mixture weights over the K objects and one
clutter class (Equation 5.5) while the associations of observations to
components at time t have an in�nite set of mixture weights, �t (Equa-
tion 5.7. Thiswas a design decision based on the assumption that tracked
objects would contain approximately the same number of parts but
that within-object parts would vary in appearance, shape, and visibil-
ity at any given time t . We emphasize that components are estimated
independently at each time; they have no dynamics nor do they persist
over time. Finally, objects evolve according to linear Gaussian dynam-
ics,

p(xtk | x(t�1)k = N
�
Fx(t�1)k ,Q

�
(5.9)
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where F is a linear dynamics function represented a random accelera-
tion model andQ is a covariance set to re�ect expected object motion.

NPE is used as a nonparametric baseline to the Nonparametric
Parts Model in Chapter 3.6. For 2D video inputs, observations �tn are
image coordinates and latent trajectories xtk are describe object lo-
cation and velocity in image coordinates. For 3D point cloud inputs,
observations �tn are world coordinates (assuming the sensor and the
world coordinate frames align) and latent trajectories xtk describe ob-
ject location and velocity in world coordinates. An augmented version
of the Nonparametric Parts Model (ANPE) is used to track macaque
primates for more than 100 hours in a controlled experiment on behav-
ior discussed in Chapter 5.3.4. The augmented model is de�ned next.

5.3.2 Augmented Nonparametric Extents Model

Figure 5-2: Exponential CDF association
model in Augmented NPE. Higher ob-
servation counts Ntkp (Equation 5.11)
that are classi�ed as belonging to target
k (Equation 5.10) rapidly increase the
probability that component �tp is asso-
ciated to object k (Equation 5.12).

The Nonparametric Extents Model is augmented so that it is better
suited to speci�c tracking environments. In the case of macaque track-
ing in Chapter 5.3.4, one primate always wears a colored bandana
around its neck. The bandana is not visible in all frames due to occlu-
sions, but provides strong evidence of object identity when available.
De�ne the logistic regression model for object k , observation n at time
t as,

p(ctkn | wk ,�tn) = Bern
�
ctkn | � (w>k �tn)

�
(5.10)

where wk 2 R
D� are a set of object-speci�c identi�cation weights

(e.g., trained to capture the color of the bandana) and ctkn is a per-
observation, per-object boolean that indicateswhether observation�tn
is likely to have been generated by object k . Let,

Ntkp =

N’
n=1

ctkn (5.11)

be the count of observations associated to componentp that are identi-
�ed with object k . observation count sNtkp in Equation 5.11 associated
to the target-k appearance model in Equation 5.10 should increase the
probability that componentp is associated to targetk . Modify sampling
of associations of components to parts so that for k > 0:

p(�tp = k | �tp, xt ,Ntkp ) /

(
N(µtp | H xtk , �X ) if Ntkp < �1

1 � e�Ntkp o.w.
(5.12)

The �rst case is the conditional implied by the Nonparametric Extents
generative model in Chapter 5.3.1 whenever the counts Ntkp fall be-
low threshold �1. The second case is the CDF of the exponential dis-
tribution with parameter �. When Ntkp � �1 then the probability that
component p belongs to object k rapidly becomes proportional to 1 as
Ntkp increases. Figure 5-2 shows examples of the CDF for di�erent �.
The two cases are separated by a threshold so that not observing high

116



counts for a given component does not penalize association of that
component to object k . This is chosen because the bandana will not
be visible in all parts that belong to a macaque, nor will the bandana
always be visible to the part(s) that contain it due to occlusions.

The probability of associating components to clutter is also aug-
mented to reduce the occurrence of large, sparsely-populated compo-
nents being associated to objects. Let �pt = {�tn : ztn = p,p > 0}
be the set of observations associated to component p at time t and
Mtp = |�pt | be the number of observations associated to component
p at time t . For each element in �pt �nd its nearest neighbor and com-
pute their L2 norm distance. Then, take the average over all such near-
est neighbor distances in �pt . Speci�cally, de�ne the average nearest-
neighbor distance of observations in component p as,

�tp =
1

Mtp

’
�tn 2�

p
t

min
�tn0 2�

p
t \ �tn

| |�tn � �tn0 | | (5.13)

and augment the probability of assigning component p to clutter as,

p(�tp = 0 | �tp,�tp ) / (5.14)(
Unif

�
µtp | U0

�
IW

�
�tp | �0, S0

�
if �tp < �2

1
� e
��tp/� o.w.

(5.15)

where the �rst case corresponds to the standard Nonparametric Ex-
tents Model of Chapter 5.3.1 and the second case is the exponential
distribution with scale parameter � . Equation 5.15 rapidly increases
the probability that a component will be associated to clutter as the
average nearest neighbor distance between observations in that com-
ponent increases.

The augmentations from Equations 5.12 and 5.15 do not conform
to the Nonparametric Extents generative model as stated in Figure 5-1
but substantially improve performance for long-term Macaque track-
ing. Incorporating per-observation classi�er decisions can be modeled
generatively by adding ctkn as observations that depend on �tn , ob-
ject appearance weights wk , and associations ztn . Exact sampling of
z, � and � would become expensive, however. The nearest-neighbor
condition of Equation 5.15 would be more challenging to model in a
generative framework because NPE assumes that observations are iid
draws from components. Modeling an average distance generatively
would require the use of a stochastic process as the conditional prob-
ability distribution of observations, and would complicate the model
de�nition and inference without necessarily improving tracking per-
formance. Following, we detail inference for the general Nonparamet-
ric Extents Model, along with details relevant for the Augmented Non-
parametric Extents Model.
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Algorithm 8: Randomized Median Finding Algorithm
Input : �n = {�tn}Tt=1, L
Output: median

�
{�tn}Tt=1

�
1 Sample without replacement �q ⇢ �n s.t. |�q | = L logT .
2 Sort �q
3 return median(�q) = �q

(1/2)L logT

5.3.3 Inference in the Nonparametric Extents Model

NPE inference proceeds by estimating the latent variables:

{ztn}
T ,N
t=1,n=1 {�tp = (µtp, �tp )}

T ,1
t=1,p=1 (5.16)

{�tp }
T ,1
t=1,p=1 {xtk }

T ,K
t=1,k=1 (5.17)

Joint sampling from the posterior on (z, � , � , x) conditioned on all ob-
servations � is well-de�ned but has no analytic form. Exact sampling
can be accomplished by Gibbs iterations where a separate Dirichlet
Process is sampled among N ⇡ 1e6 observations, the number of pixels
in an HD camera. To save computation, wemake three approximations
that allow components to be estimated in parallel across time, leaving
estimation of latent object states xtk as the only serial process:

1. Foreground associations are estimated by sampling an auxiliary
indicator variable ftn for each observation so that background
is associated as in the �rst term in Equation 5.1 (ftn = 0) and
foreground (the space of all components) is associated according
to a Uniform distribution over the observation space (ftn = 1),

p(ftn = 1 | �tn,bn) / Unif(�tn | UA)

p(ftn = 0 | �tn,bn) / N (�tn | bn, �B)
(5.18)

2. We use a variational sampler to approximately sample compo-
nents �tp in parallel over all time t . Components are only �tted
to associations that have been associated to the foreground ftn
(Equation 5.18). Background and component associations ztn are
then resampled according to Equation 5.1.

3. We estimate marginal states xtk using RTS smoothing [170].

Additionally, we �t the background one time to each collection of ob-
servations so that the background model for observation n is,

bn = median
⇣
{�tn}

T
t=1

⌘
(5.19)

which can be estimated in O(logT log logT ) time with probability of
error less than 1

T 2 according to randomized Algorithm 8. See [41] for
additional analysis.
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Algorithm 9: Nonparametric Extents Inference.
Input : �
Output: z, � , �, x, P

1 for n 2 1, . . . ,N in parallel do
2 Compute bn according to Algorithm 8;
3 for t 2 1, . . . ,T in parallel do
4 for n 2 1, . . . ,N in parallel do
5 Sample foreground indicator ftn according to Equation 5.18
6 Let �ft = {�tn : ftn = 1}
7 Sample (�t , �t , zt ) | �

f
t ) according to Variational DPMM [28].

8 for n 2 1, . . . ,N in parallel do
9 Resample ztn | �t ,�tn, �t proportional to the product of

Equations 5.1, 5.6.
10 for k 2 1, . . . ,K in parallel do
11 for t 2 1, . . . ,T do
12 Predict x̂tk , P̂tk
13 Sample �tp | x̂t , P̂t , �t proportional to the product of

Equations 5.3, 5.2, 5.5
14 Compute �ltered estimates x̃tk , P̃tk | x̂tk , P̂tk , �t , �t
15 for t 2 T , . . . , 1 do
16 Compute smoothed estimates xtk , Ptk | � , xt+1, Pt+1, x̃tk , P̃tk

The inference procedure for the Nonparametric Extents Model is spec-
i�ed in Algorithm 9. Lines 1–9 are computed o�ine and in parallel
over all observation indices n for the background model bn (Line 2)
and in parallel over all times t for components (Line 7) and their as-
sociations (Line 9). Lines 10–14 are standard linear Gaussian �ltering
equations where component means act as “observations” for the �lter
and Lines 15–16 are standard linear Gaussian smoothing equations.
The latent state outputs x, P = {xtk , Ptk }

T ,K
t=1,k=1 are the approximate

marginal distribution parameters of each object at each time.
The Augmented Nonparametric Extents Model (Chapter 5.3.1) as-

sumes pre-trained logistic regression weightswk for each object k that
has an identifying marker and modi�es Line 5.5 so that Equations 5.2
and 5.3, are replaced with Equations 5.12 and 5.15.
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Extended Data Fig. 6 | Behavioural parameters of monkeys during the 
first and second five minutes of interaction. a, Schematic showing the 
two interconnected cages used for habituation of individual macaques 
and subsequent paired social-interaction assay. b–l, Separate behavioural 
parameters of monkeys in control and SHANK3-mutant groups during 

the first five minutes of interaction. m, No difference in social behaviours 
(including chasing, following, circling, fleeing and play) during the second 
five minutes of interaction. In all panels, n = 6 macaques for control 
group; n = 5 macaques for the SHANK3-mutant group. Data are presented 
as mean ± s.e.m., two-tailed Mann–Whitney U-test.

Figure 5-3: Macaque environment
schematic, measuring 3m⇥1.5m⇥1.5m.
A divider in the middle is used to phys-
ically separate subjects in the �rst and
last ten minutes of each trial.

5.3.4 Evaluation

Collaborators design an experiment that asks: do SHANK3 gene mu-
tations cause autism-like behaviors in macaque primates? If so, the
experiment would contribute the �rst evidence for using primate ani-
mal models in autism research. Animal models for autism can aid the
development of novel drugs and treatments for humans with autism.

Autism-like behaviors include reduced motor function, environ-
ment exploration, and social interaction. Motor function and environ-
ment exploration is estimated by collaborators fromANPE video track-
ing of macaque primates while social interaction is manually scored by
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collaborators who are experts in primate behavior.
Macaque subjects belong to one of three groups in this experiment:

“Mutants” are genetically edited by collaborators using CRISPR-Cas9
[46, 151] so that they have the SHANK3 gene mutation. “Controls”
and “Probes” receive no genetic editing. All other factors about envi-
ronment and rearing prior to the experiment are held constant.

The experiment proceeds by repeated trials of two macaque sub-
jects being placed into a cage with dimensions 3m ⇥ 1.5m ⇥ 1.5m (Fig-
ure 5-3) and monitored for movement and social interaction. Each trial
lasts 50minutes and consist of either one mutant and one probe being
paired, or one control and one probe being paired. A physical divider is
placed in the middle of the cage for the �rst and last 10minutes of each
trial, separating the subjects. Trials proceed in random order so that
each mutant eventually interacts with all 10 probes, and each control
also interacts with all 10 probes. Prior to the experiment, each subject
is individually habituated to the cage for 30 minutes on two separate
days. In total, there are �ve mutants, six controls, and 10 probes. Fig-
ure 5-4 visualizes the 110 social interaction trials that comprise each
mutant interactingwith all probes and each control interactingwith all
probes. Social interaction data spans 91.7 hours and habituation data
spans 21 hours. ANPE video tracking is performed on social interac-
tion and habituation data.

Figure 5-4: Macaque experiment
schematic. Each trial consists of a
single mutant (square) and probe
(diamond) in the same cage, or a
single control (circle) and probe in
the same cage. There are a total of
110 trials, indicated by edges, one for
each mutant/probe and control/probe
pairing. All mutants except the black
square are male. Controls are male
(white circle) or female (black circle).
Half of the probes are male, and half
are female.

We are interested in statistical comparisons of behavior between
mutant/probe and control/probe social interactions. Behaviors of in-
terest include low-level motion over time and high-level activities such
as groom or chase. It is common for biologists to manually label both
low-level and high-level behaviors in behavior experiments but the
volume of data in this experiment makes that time-consuming. Path-
Track, a recent work [132] that augments multi-object tracking with
dense annotations collected in an e�cient interface, states that it takes
1.33x video time per track to densely annotate object centroid trajec-
tories in video. By that calculation, it would take 300 hours to densely
track Macaque data in a state-of-the-art interface. Unlike the Path-
Track approach, annotations cannot be crowdsourced due to the sen-
sitive nature of the data, so all annotations would have to be manually
performed by persons within the lab.

Instead, we use the Augmented Nonparametric Extents Model to
infer low-level motion behavior over time, both for habituation tri-
als and social interaction trials. We manually annotate a 10000-frame
subset of experiment data to use as groundtruth to estimate overall
tracking quality. We generate multiple track estimates by running Al-
gorithm 9 and sampling 100 set of trajectories from the RTS smoothed
[170] marginal distributions on latent states.

Figure 5-6 provides the CLEAR MOT [23] Multi-Object Tracking
Accuracy (MOTA, Equation 4.37) and IDF1 tracking metrics where

120



Figure 5-5: Nonparametric Extents OSPA(2) Tracking Metrics. OSPA(2) combines er-
rors in the number of objects estimated at each time and the localization of each object
at each time. NPE never incurs cardinality errors for this experiment because the num-
ber of objects are speci�ed in advance. Localization errors are summed across targets
so that the mean localization error in each frame, summed over both macaques, is 80
pixels, less than 4% of video width for each object. Localization errors tend to increase
when macaques are completely occluded.

IDF1 is the analog of the F1 score for multi-object tracking:

IDF1 =
2 IDTP

2 IDTP + IDFP + IDFN
(5.20)

IDTP, IDFP, and IDFN are true positives, false positives, and false neg-
atives, respectively, but are computed as part of a bipartite matching
problem that rewards consistent identi�cation of inferred trajectories
and groundtruth trajectories. We see that Augmented NPE has very
high IDF1 and MOTA scores (both IDF1 and MOTA have a maximum
of 1.0) on macaque experimental data. Further inspection shows that
more than 50% of samples have 0 identity switches, with the average
number of identity switches being 0.86. We attribute this to explicit
modeling of the colored bandana worn by one primate in each social
interaction.

Figure 5-6: Nonparametric Extents IDF1
and MOTA tracking metrics on a rep-
resentative subset of Macaque data.
Tracking performance is very high,
with both IDF1 and MOTA in the range
of 0.94–0.98 (of a maximum 1.0).

The factors thatmost degrades performance are trackmisses (532.3±
19.3) and track fragmentations (298.3 ± 13.1). Misses and fragmenta-
tions primarily occur when either macaque is at the center of the cage,
where long-term occlusion becomes possible. NPE typically maintains
the correct mean location but has increasing uncertainty due to lack
of observations; samples from the marginals penalize tracking perfor-
mance compared to the mean location estimate because the object lo-
cation uncertainty has no awareness that the occlusion can only oc-
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cur in the middle of the cage. Figure 5-7 shows an example where
there is high uncertainty but accurate mean location estimation. Ob-
serve that the mean estimated location of the blue macaque remains
near the groundtruth despite the large uncertainty from occlusion be-
tween frames 919 to 963. Figure 5-8 shows another qualitative example
whereNPE accurately tracksmacaqueswhen they pass by one another.
Tracking errors occur in less than 5% of frames, yielding generally high
tracking performance.

Figure 5-7: Macaque tracking during occlusion events. Top-half of images only show smoothed state estimate of object locations
(blue, red �lled circle) and covariance (blue, red open circle) alongwith groundtruth (orange star). Bottom-half of images also show
component covariances and observations colored according to the object they are associated to (white components are clutter).
The uncertainty in blue’s location grows during the occlusion from images 919–931 before diminishing when it is observed again
at 963. State estimates remain e�ective despite high uncertainty.

Figure 5-8: Macaque tracking when objects pass by. Top-half of images only show smoothed state estimate of object locations
(blue, red �lled circle) and covariance (blue, red open circle) along with groundtruth (orange star). Bottom-half of images also
show component covariances and observations colored according to the object they are associated to (white components are
clutter). Both blue and red remain tracked despite passing near one another.

Figure 5-5 visualizes the OSPA(2) tracking metric [178] over time
with 95% shading over 100 samples. OSPA(2) accounts for cardinality
errors (incorrect number of tracked targets compared to groundtruth)
and localization errors (minimizing sum of L2 norms truncated at dis-
tance c for bipartite matchings between estimates and groundtruth).
The number of objects is known and always correctly estimated in
this experiment; Typical localization errors are 40 pixels per object as-
suming even distribution of errors across both object. 40 pixels is less
than 4% of video width, with minimal variance between samples.
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Figure 5-9: Statistical analysis of macaque tracking estimates. Using ANPE tracking
estimates, collaborators found signi�cant di�erences in environment exploration (left)
as measured by in-plane motion from smoothed ANPE track estimates (p = 0.0043)
whereas they found no signi�cant di�erences in movement velocity. Squares repre-
sent mutants and circles represent controls. See Figure 5-4 for additional details on
notation.

NPE tracking was performed on habituation sessions and repeated
social interaction trials given acceptable qualitative and quantitative
performance. Smoothed track estimateswere provided to collaborators
who conducted Two-Tailed Mann-Whitney U-Tests [58] to compare
whether environment exploration between mutants paired with con-
trols is greater than environment exploration between controls paired
with probes (Figure 5-9).

Collaborators found signi�cant di�erences in environment explo-
ration (left) as measured by in-plane motion from smoothed ANPE
track estimates (p = 0.0043) whereas they found no signi�cant di�er-
ences in movement velocity, suggesting that impaired motor function
did not explain the reduced exploration found in tracking results or
reduced social interaction found by manual scoring of higher-level be-
haviors. Additional details of this experiment and its conclusions can
be found in [233].

5.4 Marmoset100 Behavior Dataset

Tracking with uncertainty quanti�cation reduces the human annota-
tion burdenwhen conducting behavior experiments. Yet, tracking only
quanti�es motion over time. In the paired social interaction experi-
ment with macaques (Chapter 5.3.4), high-level behaviors were still
manually labeled. A key limitation to building classi�cation pipelines
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in behavior science is that collection conditions varywidely and datasets
are not typically shared. In the chapter, we develop Marmoset100, a
dataset of low-level motion and high-level marmoset behaviors over
time.

Marmoset100 was collected by collaborators using software devel-
oped as part of this dissertation. Marmoset100 contains:

1. 100 hours of high-resolution RGB+Depth+Audio recordings taken
from a top-down perspective in a variety of home-cage settings.
Each recording comeswith calibration information so that depth
images can be registered to RGB images. Chapter 5.4.1 describes
the dataset and its collection.

2. A trained, pixel-accurate marmoset detector that is robust to
variations in background, occlusion, and lighting (see Figure 5-
11 for qualitative results and Figure 5-13 for quantitative analy-
sis). We computes detection on all Marmoset100 data.

3. Sampled JPT tracking estimates (Chapter 4.5) on allMarmoset100
data using marmoset detections as input. We quantitatively and
qualitatively compare JPT tracking performance toMulti-Animal
DeepLabCut [117, 134] on a subset of Marmoset100 data (Chap-
ter 5.4.3) and to additional tracking methods in Chapter 4.9.

4. A 31-hour subset of recordings are labeled and segmented by
collaborators for 25 high-level behaviors. We describe each be-
havior in Chapter 5.4.4 in preparation for experiments on super-
vised behavior classi�cation in Chapter 5.5.

Chapter 5.4.1 details recording equipment and collection conditions.
Chapter 5.4.2 describes the pixel-accurate marmoset detector and sam-
pled JPT tracking estimates. Chapter 5.4.4 discusses the collection of
labeled behaviors and their curation for supervised behavior analysis.

Figure 5-10: Marmoset home cage
schematic. All Marmoset100 videos
were captured in cages of this design,
though with variations in the location
and availability of shelving, branches,
and enrichment. See britzco.com for
more information.

5.4.1 Data Collection

Marmoset recordings were collected with a Microsoft Kinect2 camera
recording at 1920 ⇥ 1080 RGB resolution and 512 ⇥ 424 depth reso-
lution. Audio was synchronously recorded from the microphone of a
Macbook Pro 2016 laptop. Recordings are compressed in realtime so
that RGB is stored in lossy H.264 format with a footprint of 4GB / hour,
depth is stored in lossless FFV1 format [2] with a footprint of 7.3GB /
hour, and audio is stored in lossy Ogg Vorbis format at 0.06GB / hour,
so that recordings require 11.36 GB/hour or 272.64GB/day. FFV1 sup-
ports 16-bit integers that are commonly used in depth images. Informal
tests found that video compression with FFV1 was slightly better than
storing a collection of PNG-encoded images.

RGB and depth frames are not explicitly synchronized; timestamps
for each are recorded on a per-frame basis in a log �le, and camera-
speci�c calibration parameters are recorded so that depth images can

124



Figure 5-11: Pixel-accurate marmoset detection examples. Di�erent marmoset detections are colored green or blue for easier
visualization. Partial occlusions (bottom row) occur when marmosets are under shelves, branches, or one another yet the detector
is capable of detecting associations.

be aligned to RGB. Despite lack of synchronization, depth images tend
to be within 50ms of RGB captures. The dataset is 1TB of data com-
pressed and contains more than 9 million RGB+Depth frames. I de-
veloped software for realtime data collection and compression [3] and
post-hoc image alignment [1] while biology collaborators collected the
data in accordance with IRB protocols and under veterinary supervi-
sion.

There are 49 recordings collected throughout 2017–2018 with a to-
tal length of 100 hours and average per-recording length of 2.04 hours.
Data collection was performed in home-cage environments of pairs of
marmosets where there was typically access to food, water, shelter, pri-
vacy (via a nest box), and enrichment (e.g., ropes, balls, wire mesh, and
shelves for playing, climbing, and jumping). The camera was mounted
on a bracket atop the cage. The cage con�guration, mounting position,
external lighting, and background varies between recordings though
cages were always of dimensions 78 ⇥ 78 ⇥ 147 cm. Figure 5-10 shows
a schematic of the home cage.

5.4.2 Detections and Sampled Tracking Estimates

Informal tests of NPE tracking (Chapter 5.3.1) on Marmoset100 data
failed to track marmosets across strong variations in background, oc-
clusion, and lighting. In response, we train a marmoset detector and
used marmoset detections as input to JPT tracking (Chapter 4.5).

We collect a representative set of static Marmoset100 images and
hand-label the per-pixel associations of each marmoset. There are a
total of 618 marmoset annotations in varied environments, lighting
conditions, and occlusion states. We adapt the Mask RCNN [90] ob-
ject detection network for binary classi�cation of marmosets by re-
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Figure 5-13: Multi-object tracking performance comparison between JPT (magenta)
and DeepLabCut (green). DLC performance is represented as a line (green) because
it has no uncertainty quanti�cation in track estimation. JPT substantially outper-
forms DLC on tracking as measured by the composite MOTA (Equation 4.37) and
IDF1 (Equation 5.20) measures.

placing the �nal sigmoidal layer and training all network weights for
1000 epochs. Network parameters for unmodi�ed layers are initialized
with weights that were pre-trained on Microsoft Coco [123]. Data was
split 80% training and 20% testing. Training loss fell to 3% of its start-
ing value, ending at 0.032 while testing loss fell to 24% of its starting
value, ending at 0.249. As additional validation, the marmoset track-
ing results in Chapter 4.9.5 and Chapter 5.4.3 are based on marmoset
detections but graded using an independently-labeled groundtruth.

Figure 5-12: Marmoset detection failure
cases. Detections are sometimesmerged
(top) or missed (bottom )when mar-
mosets are proximate.

Figure 5-11 shows a representative sample of marmoset detections.
Visually, detection is robust on Marmoset100 data, including when
marmosets are only partially visible. The primary failure mode oc-
curs when marmosets are proximate, in which case their detections
are sometimes merged so that only a single detection is generated.
Figure 5-12 shows examples of these failure modes, which occur as
a consequence of Mask RCNN’s use of non-maximum suppression.31 31 Non-maximum suppression merges

overlapping detection regions into a
single detection.

JPT tracking (Chapter 4.5) is performed on all frames ofMarmoset100
using the centroids of marmoset detections as input observations. JPT
associations are used to recover the original, pixel-accurate detections.
Figures 4-8, 4-9, and 4-11 provide quantitative and qualitative analysis
on 15k-frame subset of this data.

5.4.3 JPT and DeepLabCut Tracking Comparison

Multi-Animal DeepLabCut (maDLC, but we refer to it in this work as
DLC) [117, 134] is a popular multi-object tracker that has recently been
developed for animal behavior research. It uses a ResNet-based deep
neural network architecture [89, 93] to independently detect per-frame
pose estimates of multiple animals, heuristically combines them into
tracklets, then stitches tracklets into trajectories for a pre-speci�ed
number of animals using amax-�owgraph-based formulation. It’s pop-
ularity stems from generally e�ective performance and high ease of
use. It is distributed with a graphical interface so that no coding is re-
quired for the process of data annotation, pose estimation training and
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detection, pose tracking, and manual, post-hoc track re�nement.
We directly compare JPT to DLC on a 15k-frame subset of Mar-

moset100 data. DLC pose estimates are trained on the same images
that JPT’s input object detections are trained on so that comparison is
on level footing at both the detection and the tracking stages. We la-
bel the same 618 images used to our pixel-accurate marmoset detector
(Chapter 5.4.2) for eight marmoset skeleton points: head, left ear, right
ear, neck, body, base of tail, midpoint of tail, and end of tail. Figure 5-
17, DLC (Pose) and JPT (Point) visualizes the representations used by
DLC and JPT in this comparison.

We trainDLCpose estimation for 100k epochs on anNVIDIAGeForce
2080 Ti GPU.32 We perform DLC tracking and compare to the same 32 DLC recommends training for at least

50k iterations with a batch size of 8. We
train for 100k iterations and �nd high
performance with no evidence of over-
�tting on held-out data.

15k-frame subset of Marmoset100 data that was used in Chapter 4.5.
Figure 5-13 shows that JPT substantially outperformsDLC in terms

ofmulti-object trackingmetrics IDF1 (Equation 5.20) andMOTA (Equa-
tion 4.37). In practice, DLC has signi�cantly greater numbers of track
misses due to missing pose estimates. In contrast, JPT tracking based
on pixel-accurate marmoset detection has far fewer track misses. Even
when JPT has missing observations, it maintains a distribution on un-
known object locations that informs association sampling. Figures 5-
23, 5-24, 5-25 show examples of missing pose estimates in DLC.

Both JPT and DLC occasionally su�er from identity switches, but
DLC provides a single tracking estimate with no notion of uncertainty.
In contrast, JPT provides a distribution on associations. In Chapter 4.5,
we used JPT’s uncertainty to identify and correct possible identity
switches. In contrast, DLC requires that users manually inspect and
re�ne tracking quality.

5.4.4 Labeled Behaviors

Collaborators label a 31-hour subset of Marmoset100 for 25 high-level
behaviors. Figure 5-14 shows each behavior. Behaviors include rapid
activities (e.g., Jumping, Scratching, Stretching, Eating) that generally
occur over 3–4 second intervals, and longer activities (Nuzzle Body, Re-
quest Grooming) that occur over tens of seconds. Collaborators auto-
matically queued video clips for behavior labeling by inspecting pair-
wise absolute di�erences in RGB frames so that non-overlapping sub-
sets of video that surpass a threshold are segmented out for labelling.
Segments are padded by 15 frames before and after the queued length
to provide additional context. Clips are labeled for presence or absence
of each behavior for each of twomarmosets. There may be 0, 1, or mul-
tiple behaviors for each marmoset in each clip. Figure 5-16 shows the
behavior label format for a single behavior clip. We emphasize that the
exact beginning and end time of each labeled behavior within each clip
is not known.

Figure 5-15 displays the total count of annotated behaviors summed
over both targets and the distribution of clip durations containing each
behavior. 4/25 behaviors frequently occur: Jumping, Peering, Hanging
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Figure 5-14: The 25 high-level behaviors of Marmoset100. Some behaviors involve both marmosets, such as Grooming Other,
Nuzzle Body, Huddle, and Following. Others occur independently, such as Scratching, Grooming Self, and Hanging on Bars.
Several involve interaction with the environment: Eating, Drinking, Inside Nest Box, Carrying Something.

on Bars, Inside Nest Box, Scratching each have more than 1000 labeled
instances. 5/25 behaviors are rare: Nuzzle Face, Carrying Something,
Rearing/Standing, Head Shake, Nuzzle Anus all have fewer than 50 la-
beled instances.

5.5 Behavior Classi�cation

It is common for scientists to collect low-level motion behavior data in
the form of manual or automatic video tracking. Low-level behaviors
can be analyzed for variation between conditions (as in Chapter 5.3,
Figures 5-9) and can help explain di�erences in high-level behavior
[233]. Yet, it remains common for high-level behaviors to be manu-
ally classi�ed by ethologists [7], as occurred in the study presented in
Chapter 5.3. In this section, we investigate how tracked motion can be
used to predict high-level behavior.

annotation1

annotation2

clip_start

clip_end

1 x nBehaviors

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
. .

 .( (nBehaviors

25

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. .
 .( (nBehaviors

25

250 ... 370150( (

500 ... 370900( (1 x nBehaviors

Figure 5-16: Marmoset100 behavior la-
bel format. Video clips are extracted
from Marmoset100 based on motion
thresholding. For each extracted clip
and marmoset, the presence or absence
of all 25 behaviors in Figure 5-14 are la-
beled in a binary vector. Positive labels
indicate that the indicated behavior oc-
curred at some point in the clip.

Tracked motion is commonly represented by simple point trajec-
tories of object centroids. More complex representations include tra-
jectories of pose estimates or object shapes as represented by pixel or
point associations. Independent of representation, trackedmotion con-
tains frequent ambiguities in the form of potential identity switches.
DeepLabCut [134] is currently the most popular tracker in animal be-
havior yet it contains no representation of association uncertainty. In-
deed, most multi-object tracking formulations either do not represent
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Figure 5-15: Marmoset100 behavior annotation counts and durations. Jumping, Peering, Hanging On Bars, Grabbing Bars, and
Inside Nest Box are very short in duration and commonly occur, with more than 1000 labeled instances each. Others, such as
Nuzzle Body and Solicit/Request Grooming have longer durations and occur infrequently.

uncertainty in tracking estimates or else they do so poorly as shown in
Chapter 4.5. In contrast, we observed that our tracker, JPT, e�ectively
captures uncertainty in tracking estimates (Chapter 4.9.4). We expect
that some behaviors contain greater tracking ambiguity and that tack-
ing ambiguity can be used to improve behavior classi�cation.

We compare how tracking representations (point, contour, pose)
and presence or absence of uncertainty in tracking estimates a�ects
supervised behavior classi�cation. Figure 5-17 visualizes �ve separate
approaches: JPT tracking with point or contour representations, with
and without uncertainty, and DLC tracking, which uses a pose repre-
sentation.

5.5.1 Tracking Representations

DLC (Pose) directly produces and tracks pose estimates that are rep-
resented by a collection of points with consistent order across time.
DLC produces a single tracking estimate by solving a graph optimiza-
tion and thus has no representation of uncertainty.

JPT is a general multi-object tracker and can take as input obser-
vations with any vector-valued representation. In this experiment, JPT
inputs are the centroids of marmoset detections from the trained mar-
moset detector in Chapter 5.4.2. The JPT (Point) representation is taken
as a single posterior sample of inferred JPT trajectories.

JPT produces a joint distribution over trajectories and associations.
Associations specifywhich of the original pixel-accuratemarmoset de-
tections are associated to each animal at each time (Figure 5-11). Mar-
moset detections contain information about the shape and visibility of
each marmoset that may be relevant to classi�cation of high-level be-
haviors. We investigate the utility of shape information in the form of
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Figure 5-17: Varying multi-object tracking representation and use of uncertainty as
inputs to follow-on behavior classi�cation. Top row contains complex tracking repre-
sentations (contours for JPT, pose for DLC) while bottom row contains simple point
trajectories. JPT represents uncertainty (left column) by sampling multiple posterior
tracking estimates in either the contour or point representations. For comparison, a
single JPT tracking estimate is obtained by drawing one posterior sample. DLC has
no uncertainty representation, so it only provides a single tracking estimate. In total,
we investigate �ve conditions: JPT with or without uncertainty in both contour and
point representations, and DLC, which uses a pose representation and has no repre-
sentation of uncertainty. See Figure 5-18 for further visualization of the pose, contour,
and point representations.

contours with the JPT (Contour) condition, which draws a single pos-
terior sample of trajectories and associations. Associations are used to
recover the original marmoset detection. A contour of the marmoset
outline is computed and combined with the inferred centroid to con-
struct contour trajectories. Figure 5-18 visualizes JPT’s point and con-
tour representations, and DLC’s pose representation.

Finally, JPT samples multiple joint trajectory and association real-
izations from its posterior. We add two more experiment conditions:
JPT (Contour, Sampled) and JPT (Point, Sampled), which are like the
JPT (Contour) and JPT (Point) representations, but contain multiple
posterior samples. We discuss how multiple samples are used for be-
havior classi�cation in Chapter 5.5.3.

In summary, the �ve experiment conditions investigate the e�ect
of tracking representation and presence of uncertainty on supervised
behavior classi�cation (Figure 5-17). The �ve conditions are:

1. JPT (Point) JPT with a point-based tracking representation and
no representation of uncertainty.

2. JPT (Contour) JPT with a contour-based tracking representation
and no representation of uncertainty.

3. DLC (Pose): Multi-Animal DeepLabCut [117] with a pose-based
tracking representation and no representation of uncertainty.

4. JPT (Point, Sample) JPT with a point-based tracking representa-
tion and explicit representation of uncertainty.
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Figure 5-18: Tracking representations used as input to behavior classi�cation. JPT (magenta arrows) reasons over pixel-accurate
associations for each tracked object represented as image masks. We construct the JPT (Point) representation as the centroid
of each target’s mask. We construct the JPT (Contour) representation as the centroid and a collection of evenly-sampled points
along the contour, ordered by their angle from the centroid. DLC (orange arrows) reasons over pose estimates represented as
a consistent ordering of eight points (Head, Left Ear, Right Ear, Neck, Body, Tail Base, Tail Middle, Tail End). Partial occlusions
(green) change the shape of the JPT (Contour) representation and cause missing data for the DLC (Pose) representation. Original
images contain a red ball that was desaturated to improve visibility.

5. JPT (Contour, Sample): JPT with contour-based tracking repre-
sentation and explicit representation of uncertainty.

5.5.2 Experiment Setup

We gather labelled behavior video clips (Figures 5-14, 5-15) from Mar-
moset100 into training (70%), validation (10%), and test (20%) sets. Each
clip contains zero, one, or multiple behaviors so we randomly sample
1000 train/val/test splits and choose the split with least per-behavior
deviation from the desired 70/10/20 ratios. Mean variation from the
ideal split is less than 0.25% for all behaviors. For behavior video n, be-
havior label �n 2 {0, 1}25 represents zero, one, or more behaviors that
either of two marmosets performed at least once in the clip. In total,
there are N = 6213 videos, of which 4337 are used for training, 619 for
validation, and 1240 for a test set.We investigate behaviors that have at
least 50 labelled examples, excluding 5/25 behaviors: Carrying Some-
thing, Nuzzle Face, Nuzzle Anus, Head Shake, and Rearing/Standing.

131



6400

32

1066

16

177

81

29 4

4

Dense


1

25

3x1 Conv, 32

MaxPool, /6

Dropout, 0.2

3x1 Conv, 16

MaxPool, /6

Dropout, 0.2

3x1 Conv, 8

MaxPool, /6


3x1 Conv, 4

AvgPool, /6


Input


Figure 5-19: Multilabel network used to classify behavior based on tracking represen-
tations derived from the Joint Posterior Tracker (Chapter 4.5) and DeepLabCut [134].
Each colored block is a collection of operations labeled with 2D output dimensions. In-
put is a vector representation of tracked motion in one video. All convolutional layers
use RELU activations while the dense layer uses independent sigmoidal activations
for each of 25 high-level behaviors.

Tracking for each of the �ve experiment approaches is performed
on all training, validation, and test videos according to Figure 5-17. For
each approach, video n is represented by its tracked representation,
xn . Tracking representation xn is a tensor with dimensions (Tn,K,D)
where Tn is the total number of frames in video n, K = 2 is the num-
ber of marmosets in each video, and D is the representation dimen-
sionality of each tracked object at each time. DLC is trained on an
8-point 2D skeleton of each marmoset (Figure 5-18), represented by
consistently-ordered points in 2D so that its representation has per-
marmoset, per-time dimension of D = 8 ⇤ 2 = 16. The JPT point rep-
resentation has a per-marmoset, per-time dimension of D = 2 since
each object is represented by a single point in image space. The JPT
contour representation is the tracked centroid along with the collec-
tion of outermost points of each associated marmoset detection. It has
variable dimension for each marmoset at each time because the num-
ber of pixel associations to each marmoset varies with their visibility,
distance to camera, and shape. For fair comparison to DLC, we down-
sample the JPT (Contour) representation so that it only contains the
centroid and 7 contour points.

For each approach, the dataset consists of 6213 pairs (xn,�n). Be-
havior labels �n are common to each approach but xn varies with ap-
proach. For each approach, behavior prediction is formulated as a mul-
tilabel classi�cation problem: one classi�er is trained to make 25 in-
dependent behavior predictions. All �ve approaches use the convolu-
tional neural network represented in Figure 5-19. The network is four
sets of convolution and pooling layers, two of which employ regu-
larization in the form of dropout. All convolutional layers use RELU
activations. The �nal layer is a dense output of scores b 2 R25 with
independent sigmoidal activation, one for each of the 25 possible be-
haviors. In all approaches, we train for 200 epochs with Adam opti-
mization [110] and binary cross-entropy loss.

We transform each tracking representation so that they have con-
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sistent input dimensionality (and hence, the same number of behavior
classi�cation parameters). We use DLC’s 8-point skeleton for refer-
ence: JPT’s point representation is 0-padded whereas JPT’s contour
representation is downsampled to a centroid and 7 points on the con-
tour. Track representations are 0-padded or downsampled in the time
dimension so that all videos are represented as if they had 200 timesteps.
More than 90% of input videos have less than 200 frames. The median
video length across the labelled behavior dataset is 71. Each tracking
representation has dimension 6400 (Nt = 200,K = 2,D = 8 ⇤ 2). In all
approaches, the multilabel behavior classi�cation network has 2597
trainable parameters, which is less than the number of training sam-
ples (4337), to help prevent over�tting.

5.5.3 Exploiting Uncertainty for Behavior Classi�cation

The JPT (Contour, Sampled) and JPT (Point, Sampled) approaches draw
S = 15 tracking realizations from JPT’s posterior over trajectories and
associations. For each approach and each video n, we have track real-
izations {x (s)n }

S
s=1, all sharing the same behavior labels �n .

Track realizations contain information about ambiguities in the
data, such as occur from identity switching: one sample may interpret
two objects as crossing while in another, they are interpreted as not
crossing. We expect videos that contain behaviors involving objects
coming close then diverging to have a higher likelihood of identity
switches in tracking estimates than behaviors where objects remain
separated. If this is true, a classi�er that can train with an awareness
of data ambiguities should be able to exploit uncertainty in tracking
estimates to perform more e�ective behavior classi�cation.

In the JPT (Contour, Sampled) and JPT (Point, Sampled) approaches,
we provide our classi�er with an awareness of uncertainty by using
multiple tracking realizations for each video. We augment the original
training set,

Dtrain = {(xn,�n)}
Ntrain
n=1 (5.21)

so that it becomes:

D 0train = {{(x (s)n ,�n)}
S
s=1}

Ntrain
n=1 (5.22)

The augmented training set has size |D 0train | = SNtrain for S the num-
ber of posterior samples we draw from JPT for each video. Training
proceeds on the augmented training set as normal.

Inference is similar to training, but has an additional step. Let f
represent the neural network in Figure 5-19, trained on D 0train. For test
video n, independently generate behavior scores for each sample s =
1, . . . , S :

b(1)n = f (x (1)n ) b(2)n = f (x (2)n ) . . . b(S )n = f (x (S )n ) (5.23)
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Figure 5-20: Exploiting uncertainty in tracking estimates to improve supervised behavior classi�cation. For video n, multiple
tracking samples x (1)n , . . . , x

(S )
n ⇠ p(xn ) are drawn from JPT’s multi-object tracking posterior (Equation 4.10), which re�ects

ambiguity in the data. Sample x (1)n shows that blue and green did not cross whereas sample x (S )n shows that they did cross. For
behavior classi�cation, training and test sets are augmented so that there are S sets of sampled tracking estimates for each video,
all sharing the same behavior labels. Training proceeds with the sample-augmented dataset. To classify behaviors at test time,
each tracking sample is separately classi�ed and their results are combined by a majority vote.

where,
b(s)n =

⇣
b(s)n,1,b

(s)
n,2, . . . ,b

(s)
n,B

⌘>
(5.24)

are the B = 25 behavior scores for sample realization s of input video
n, where 0  b(s)n,i  1 for each behavior i = 1, . . . ,B. We emphasize
our task is multilabel classi�cation; hence, it is possible that,

B’
i=1

b(s)n,i > 1 (5.25)

since each behavior is independently classi�ed. The S sets of behavior
scores for video n are then combined to form a �nal decision. In this
work, we set a common threshold 0  �  1 to generate S binary
decisions and combine them by a simple majority vote. Other combi-
nation schemes can be used or the S sets of behavior classi�cations can
provide additional uncertainty quanti�cation beyond the probabilistic
interpretation of each score b(s)n,i .

33 Figure 5-20 visualizes how we use 33 Probabilistic interpretation of neu-
ral network classi�cation scores has
weak calibration [80]. Perhaps uncer-
tainty quanti�cation using sampled in-
puts may provide better calibration?

uncertainty as represented by sample realizations in the training and
testing phases.

5.5.4 Results

We investigate the e�ect of track representation and use of uncer-
tainty for multilabel behavior classi�cation as visualized in Figure 5-
17. Two approaches quantify uncertainty: JPT (Contour, Sampled) and
JPT (Point, Sampled). Three approaches have no representation of un-
certainty: DLC (Pose), JPT (Contour), and JPT (Point). We identify key
trends in this behavior classi�cation based on representation and show
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Figure 5-21: Supervised behavior classi�cation performance as measured by AUC based on the presence or absence of uncertainty
and use of a complex (pose, contour) or simple (point) representation. JPT samples multiple realizations of tracking estimates to
represent uncertainty (green) and uses a single posterior draw (blue) to isolate the bene�ts of uncertainty. DeepLabCut (orange)
only provides a single tracking estimate so it has no representation of uncertainty. JPT with sampled contours (JPT Contour, Sam-
pled) achieves best mean AUC over all behaviors while DeepLabCut yields lowest mean AUC. Behaviors are grouped by approach
with best performance. DeepLabCut does not have its own group because it does not have best performance for any behavior.
JPT with point representation outperforms DeepLabCut with the more sophisticated pose representation due to superior multi-
object tracking. JPT’s contour representation typically outperforms JPT’s point representation due to the additional information
it conveys about object shape. Using uncertainty further increases JPT performance for both point and contour representations.
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Uncertainty
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Figure 5-22: Supervised behavior classi�cation performance as measured by AUC based on di�erent tracking methods (JPT,
DeepLabCut), representations (DLC: Pose, JPT: Point, Contour), and presence (JPT) or absence (DLC) of uncertainty.

qualitative examples that may help explain why those trends occur.
Figure 5-21 shows multilabel classi�cation performance as mea-

sured by AUC for each approach and behavior. Behaviors are grouped
by approachwith best AUC.Within each group and behavior, approaches
are sorted by highest AUC. Figure 5-22 shows the same information
as a heatmap where approaches (rows) are sorted by best mean AUC
(far-right column) and behaviors (columns) are sorted by JPT (Contour,
Sampled) performance.

There should be �ve groups in Figure 5-21 since there are �ve ap-
proaches but behavior classi�cation using DeepLabCut’s tracking esti-
mates fails to achieve best performance for any behavior despite using
a sophisticated pose representation. Even JPT point trajectories with
no uncertainty representation yield better mean behavior classi�ca-
tion AUC (0.68) than DLC pose (0.65). We attribute this to JPT’s supe-
rior multi-object tracking performance (Figure 5-13), even when their
underlying pixel-accurate detections (JPT) or pose estimates (DLC) are
trained on the same data. As we investigate behavior performance, we
will qualitatively see that DLC has greater numbers of track misses
than JPT.

JPT contour representations are more performant on average than
JPT point representations when either do or do not represent uncer-
tainty. Figure 5-23 shows JPT (Point) and JPT (Point, Sampled) repre-
sentations accurately tracking marmosets as they engage in the Hud-
dle behavior. Point representations only capture proximity and so the
classi�er fails to classify this instance correctly. In contrast, JPT (Con-
tour) and JPT (Contour, Sampled) accurately capture their proximity
and relative shape con�guration; classi�cation based on the contour
representations correctly captures this instance of Huddle. DLC (Pose)
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Figure 5-23: Marmosets engaging in the Huddle behavior. JPT contour representations (with or without uncertainty) tend to
outperform JPT point representations despite both representations accurately tracking without identity switching. Contour rep-
resentations capture their relative con�guration while point representations only capture proximity. DLC inaccurately splits a
single pose estimate across two marmosets (Columns 1,3), confusing a classi�er’s ability to capture relative con�guration. (Top
Row): Original images. (Middle Row): JPT (Point) as an X, JPT (Contour) as an outline, and DLC (Pose) as dots. (Bottom Row):
Five realizations of JPT (Point, Sampled) and JPT (Contour, Sampled), visualized as in the second row but with Gaussian noise for
improved visibility.

misses detections of one or the other marmoset (Columns 1, 3) and in-
correctly estimates a single pose that spans the two marmosets. Clas-
si�cation based on DLC (Pose) fails on this instance of Huddle and, in
general, underperforms all JPT representations on Huddle.

Uncertainty representation for JPT point or contour representa-
tions improves average behavior classi�cation performance. Anogen-
ital Display receives the greatest bene�t from uncertainty representa-
tion with 0.18 absolute AUC gain as compared to the best approach
without uncertainty. These displays often exhibit repeated occurrence
of marmosets being in proximity, then pursuing each other, then com-
ing close together again. Figure 5-24 shows this pattern: blue and green
marmosets begin close together, then one pursues the other, during
which JPT samples become split on whether an identity switch oc-
curred (Columns 2-4). The confusion continues as they become proxi-
mate and perform the behavior. Extended confusion in identity occur-
ring from repeated (proximity, chasing, proximity) events may explain
why uncertainty improves classi�cation of this behavior.

JPT (Point, Sampled)marginally outperforms JPT (Contour) in terms
of averageAUC over all behaviors, but signi�cantly in terms of number
of behaviors it performs best on: 8 to 3. This suggests that uncertainty
representation may provide as much information about behavior as
does a more sophisticated tracking representation. Inside Nest Box is
one behavior where uncertainty representation of simple, point trajec-
tories outperforms the complex, contour representation without un-
certainty. Figure 5-25 shows an example of the Inside Nest Box behav-
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Figure 5-24: Marmosets engaging in the Anogenital Display behavior, which receives the highest bene�t from uncertainty repre-
sentation for JPT point and contour representations. JPT (Point, Sampled) and JPT (Contour, Sampled) determine that marmosets
are close enough that they may or may not have switched, as visualized by the con�icting red/green sampled point or contour
representations (last row, columns 2–4). (Top Row): Original images. (Middle Row): JPT (Point) as an X, JPT (Contour) as an
outline, and DLC (Pose) as dots. (Bottom Row): Five realizations of JPT (Point, Sampled) and JPT (Contour, Sampled), visualized
as in the second row but with Gaussian noise for improved visibility.

ior. The JPT (Contour) representation undergoes large and rapid shape
variation due to partial occlusion when one marmoset (green) emerges
from the nest box. As the green marmoset jumps out, a small percent-
age of JPT samples capture a potential identity switch (columns 3, 4)
due to proximity with the blue marmoset. JPT (Point, Sampled) rep-
resents this confusion with simple point trajectories that are not con-
founded by large shape variations (which also commonly occur when
marmosets are proximate, perhaps making it harder for a contour-
based classi�er to distinguish Inside Nest Box from other proximate
social behaviors based on shape alone). In this example, classi�cation
based on JPT (Point, Sampled) is correct, but classi�cation based on
JPT (Contour) is incorrect. DLC (Pose) fails to estimate any pose for the
greenmarmoset in the �rst two columns andmisses the head, ears, and
neck pose estimates (Column 3). Classi�cation based on DLC (Pose)
fails on this instance and, in general, underperforms all JPT represen-
tations on the Inside Nest Box behavior.

5.6 Related Works

Works related to multi-object tracking and parts representations are
surveyed in Chapters 4.4 and 3.7. We highlight additional works that
relate to the Nonparametric Extents Model (Chapter 5.3.1) in their use
of nonparametric priors for modeling object shape or motion. We then
conclude with discussion of animal behavior datasets.

Nonparametric Object Motion and Shape [147] segments fore-
ground into an unknown number of objects with a Dependent Dirich-
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Figure 5-25: DLC (Pose) fails to track the green marmoset (columns 1–2) due to partial occlusion while JPT (Contour) and JPT
(Contour, Sampled) experience large variations in shape. JPT (Point) and JPT (Point, Sampled) are robust to these shape changes.
One of �ve JPT samples believes targets crossed (bottom row, columns 3, 4). (Top Row): Original images. (Middle Row): JPT
(Point) as an X, JPT (Contour) as an outline, and DLC (Pose) as dots. (Bottom Row): Five realizations of JPT (Point, Sampled) and
JPT (Contour, Sampled), visualized as in the second row but with Gaussian noise for improved visibility.

let Process [128] but, unlike NPE, they parametrically model each in-
dividual as a single component. Similarly, [81] models each video pixel
with a Dirichlet Process mixture to segment multiple foreground ob-
jects from background, but does not model multiple components of
foreground objects as NPE does. [222] nonparametrically models ob-
ject shape, but only of a single object in motion. Most relevant is Zan-
otto et al. [227], a nonparametric model that infers group structure in
the motion of multiple objects by modeling input tracking estimates
as being generated from an in�nite mixture of groups. The groups of
Zanotto et al. are similar to the extents of NPE, but crucially di�er in
that they only generate single observations of individuals. In contrast,
NPE generates multiple components per object, and each object com-
ponent can generate multiple observations.

Animal Datasets We know of no animal behavior datasets contain-
ingmarmoset behavior. In general, relatively few animal behavior datasets
are publicly available. OpenMonkeyStudio [14] uses 62 cameras to in-
fer pose as represented by 13 joint locations on macaque primates.
They release a set of 192k synchronized image captures totalling 3.8
GB. 3D ZEF [159] releases eight video sequences containing 1–10 ze-
bra�sh. Sequences range from 15–120 seconds in duration. The total
dataset contains 86k point or bounding box annotations. CAPTURE
[133] releases a 24-hour kinematics dataset that infers the 3D pose
of mice using 12 cameras and 20 surgically-implanted retrore�ective
markers. CAPTURE does not provide raw data, only the results of their
analysis. Many animal behavior analyses are surveyed in [7] but few
of the referenced works make the data available.

139



5.7 Conclusion

Wedevelop the theNonparametric ExtentsModel (Chapter 5.3), amulti-
object tracker that automatedmotion analysis of free-movingmacaques
in over 100 hours of experimental macaque data. Tracking results were
analyzed by collaborators and contributed to the �rst experimental ev-
idence for primate animal models of autism (Chapter 5.3.4). In further
collaboration, we develop Marmoset100 (Chapter 5.4), a dataset con-
taining 100 hours of marmoset behaviors, including a subset that is la-
beled by collaborators for 25 high-level behaviors (Chapter 5.4.4). We
train a pixel-accurate marmoset detector and perform JPT tracking on
all Marmoset100 data (Chapter 5.4.2), facilitating the automatic label-
ing of more than 9 million frames of video.

We directly compare JPT and DLC tracking on a subset of Mar-
moset100, and show that JPT signi�cantly outperformsDLC, evenwhen
their underlying observationmodels are trained on the same data (Chap-
ter 5.4.3). We then perform supervised, multilabel behavior classi�ca-
tion (Chapter 5.5) based on varying representation (JPT centroid point,
JPT object contour, DLC skeletal pose), and presence (JPT) or absence
(DLC) of uncertainty in tracking estimates. We show (Chapter 5.5.4)
that uncertainty in tracking estimates improves behavior classi�ca-
tion performance and that JPT’s higher-quality tracking on simpler,
point-based representations outperforms behavior classi�cation based
onDLC’s more complex pose representation. Adding contour informa-
tion and uncertainty to JPT tracking estimates further improves behav-
ior classi�cation performance.
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Chapter 6

Conclusions
“A good scientist has freed
himself of concepts and keeps his
mind open to what is.”
— Laozi

This dissertation contributes Bayesianmethods that discover part struc-
ture from object motion (Chapter 3), track the motion of multiple ob-
jectswith explicit uncertainty quanti�cation and reduction (Chapter 4),
and conduct behavior analysis in experimental and observational set-
tings at scale (Chapter 5).

Chapter 3 develops theNonparametric PartsModel (NPP) and demon-
strates that NPP’s nonparametric representation of kinematic bodies
(Chapter 3.4) infers meaningful part decompositions of objects in an
unsupervisedway by simply observing them inmotion (Chapters 3.6.1,
3.6.2). NPP’s Lie group representation constrains articulations of mov-
ing parts to physically plausible kinematic states without the require-
ment of object-speci�c knowledge such as skeletal structures. Part de-
compositions are learned on short sequences and generalize to other
datasets and instances of the same object type (Chapter 3.6.5). In con-
trast to methods that rely on extensive training data or object-speci�c
2D/3D models, I demonstrate robust analysis by direct observation of
single instances of an object without distinct visual part appearance.

Chapter 4 develops the Joint Posterior Tracker, a Bayesian solution
to the batch multi-object tracking problem (Chapter 4.5). I construct
e�cient inference to reason over permutations of associations (Chap-
ter 4.6) and empirically demonstrate that JPT more e�ectively repre-
sents posterior uncertainty than baselines (Chapter 4.9.4) while out-
performing them on standard tracking metrics (Chapter 4.9.5). JPT’s
accurate representation of uncertainty enables automatic scheduling
of informative disambiguations that rapidly drive down posterior un-
certainty while improving trajectory quality (Chapters 4.9.6, 4.7).

Chapter 5 develops reliable tracking of pairwise macaque primate
interactions in more than 100 hours of data recorded in an experi-
mental setting. Tracking frommyNonparametric ExtentsModel (NPE)
(Chapter 5.3.1) saved scientists from more than 250 hours of manual
labeling e�ort and contributed to the �rst evidence for primate animal
models in autism research (Chapter 5.3.4).

Additional JPT trackingwith uncertainty quanti�cation is performed
on 100 hours of pairwise marmoset interactions in an observational
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setting as part of the development of Marmoset100, a novel dataset on
primate interactions (Chapter 5.4). I show that JPT tracking outper-
forms Multi-Animal DeepLabCut [117, 134] tracking on Marmoset100
data, even when JPT detections and DLC pose estimates use the same
training data (Chapter 5.4.3).

Finally, I show (Chapter 5.5.4) that uncertainty inmulti-object track-
ing estimates improves behavior classi�cation performance and that
behavior classi�cation based on JPT’s higher-quality tracking on sim-
pler, point-based representations outperforms behavior classi�cation
based onDLC’smore complex pose representation. Adding contour in-
formation and uncertainty to JPT tracking estimates further improves
behavior classi�cation performance.

Broader Thoughts

My contributions come at a timewhenmachine learning and computer
vision are being integrated into the basic approaches of �elds that are
far removed from computer science. Scienti�c disciplines are no ex-
ception. Many �rst-order challenges in scienti�c work�ows are being
framed as supervised problems: large, labeled datasets are paired with
scalable, optimization-based classi�ers that have no uncertainty rep-
resentation to automate data collection and experiment design as well
as to improve simulation. These are valuable �rst steps but it has been
my experience that many datasets contain signi�cant ambiguity.

I argue that uncertainty quanti�cation helpsmake automation trust-
worthy in scienti�c approaches by correctly weighting hypotheses. It
is also useful for drawing attention to ambiguities that can be resolved
before hypotheses are evaluated by appealing to mechanisms beyond
the model. I demonstrate automated scheduling of corrections using
a noisy human oracle, but the oracle could also be a more expensive,
precise, or targeted algorithm or measurement. Modeling disambigua-
tion in the framework of Bayesian experiment design maintains trans-
parency in representation.

Unsupervised approaches have long been used in machine learn-
ing, but they are frequently performed on RD , which can be di�cult to
interpret when representations are some function of a set of features or
weights. I have combined Bayesian nonparametrics with distributions
on well-understood manifolds such as the Lie group SE(D) to enable
discovery of interpretable structure in objects with articulated motion.
Other Lie groups and Riemannian manifolds, such as P(D) can be used
to describe systems of interest in ways that are interpretable. Nonpara-
metric modeling stands to bene�t scienti�c approaches by facilitating
discovery of novel structure in these systems.

Combining BNP with distributions on manifolds requires nontriv-
ial user knowledge of two diverse �elds. Probabilistic programming
languages can, in principal, ease the inference and implementation
of these models, but few support BNP and none support general Lie
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groups or Riemannian manifolds. Furthermore, current implementa-
tions have signi�cant limitations, including limited support for dis-
crete randomvariables or variable-dimension latent spaces, arcane Lisp-
style syntax, and support for either conjugacy or gradient-based meth-
ods, not both. In contrast, optimization-based approaches have many
packages that automate inference, handle large-scale data, and visual-
ize results. Is it any wonder they have seen widespread adoption?

It is an irony that Bayesian methods have long been described as
having automatically-prescribed inference given that they often re-
quire great manual e�ort to implement. This is a barrier to their adop-
tion in other�elds. Bayesianmethods o�er interpretability, uncertainty
quanti�cation and reduction, and discovery of structure, but they await
a revolution, not just in software that simpli�es model de�nition and
posterior inference, but also in follow-on tasks such as using uncer-
tainty to guide decision making.
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Appendix A

Proofs and Derivations

A.1 Non-Ergodicity in Linear
Gaussian Random Acceleration
Models
A.2 Nonparametric Parts Full
Conditionals
A.3 Stabilized RandomWalks
A.4 Switch Inference Generalize
Extended HMM Proposals
A.5 Change of Basis

A.1 Non-Ergodicity in LinearGaussianRandom
Acceleration Models

Consider the full-conditional p(b | c,a) on Markov chain a ! b ! c

p(b | c,a) =
p(a,b, c)

p(a, c)
=

p(c | b)p(b | a)Ø
b p(c | b)p(b | a)

(A.1)

Let the conditionals be linear Gaussian with shared dynamics F and
covariance Q as is common in linear Gaussian state space models,

p(c | b) = N(c | Fb,Q) (A.2)
p(b | a) = N(b | Fa,Q) (A.3)

� = Q�1 (A.4)

Then, we can determine the covariance of p(b | c,a) / p(c | b)p(b | a)
by observing that a,b, c are jointly Gaussian, enabling us to directly
read o� the covariance of the marginals from the joint covariance:

logp(b | c,a) / �
1
2

�
(c � Fb)>�(c � Fb) + (b � Fa)>�(b � Fa)

�
(A.5)
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Eqn A.7 collects all terms quadratic in a,b, c into matrixM , which we
know to be the inverse covariance of the joint, and Eqn A.8 relabels
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the blocks:

d =

✓
c
a

◆
e = F>�F + � f =

✓
��F
0

◆>

� = f > h =

✓
� 0
0 F>�F

◆ (A.9)

Using Schur complements and only concerning ourselveswith the upper-
left entry (the marginal for b):

M�1 =

✓
e�1 + e�1 f (h � �e�1 f )�1�e�1 · · ·

· · · · · ·

◆
(A.10)

Now consider,

e�1 = (F>�F + �)�1 (A.11)
= ��1 � ��1F>(��1 + F��1F>)�1F��1 (A.12)
= Q �QF>(Q + FQF>)�1FQ (A.13)

where Eqn A.12 uses the Woodbury Matrix Identity [220]. Now, sup-
pose the Markov chain follows a random acceleration model. That is:

Q =

✓
0 0
0 q

◆
F =

✓
I I
0 I

◆
(A.14)

where 0, I ,q are of appropriate (square) dimensions and the state space
is organized as position in each dimension followed by velocity in each
dimension. Assume q = �I for some � > 0. Then,

(Q + FQF>)�1 =
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2q�1 �q�1

�q�1 q�1

◆
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Combining Eqns A.13–A.16,
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= 0 (A.19)

Hence, the covariance for p(b | a, c) = 0. Intuitively, knowledge of a
determines the position of b and knowledge of c determines the veloc-
ity of b. A linear dynamical system would typically have noisy obser-
vations of each latent state but, in this case, measurements will never
provide information about b to the Gibbs sampler because it is already
determined by a and c . Thus, a Gibbs sampler for a linear dynamical
system of this (very common) form will fail because it is not ergodic;

145



speci�cally, it can reach no state other than the state it is currently in
(such as the state the model was initialized into).

There are two obvious remedies: permit noise on the position terms
of the latent state (violating the physical model), or conduct blocked
Gibbs sampling on pairwise (or higher) collections of latent states.
Blocked Gibbs should be the preferred because small position noise
will cause undue posterior certainty and large position noise will move
the posterior even further from the desired physical model.

A.2 Nonparametric Parts Full Conditionals

Consider the multivariate Gaussian

N
✓✓

Cx1 + u
x2

◆
|

✓
µ1
µ2

◆
,

✓
�11 �12
�>12 �22

◆◆
(A.20)

where x1,u, µ1 2 RD1 , x2, µ2 2 RD2 and covariance � 2 RD1+D2 has
blocks �11 2 RD1⇥D1, �12 2 RD1⇥D2, �21 2 RD2⇥D1, �22 2 RD2⇥D2 . Then,
because Gaussian conditionals are Gaussian (see [142], Ch. 4), it fol-
lows that the conditional Cx1 + u | x2 is Gaussian:

Cx1 + u | x2 ⇠ N (Cx1 + u | µ 0, �0) (A.21)
µ 0 = µ1 + �12�

�1
22 (x2 � µ2) (A.22)

�0 = �11 � �12�
�1
22 �21 (A.23)

And, by transformation of random variables, the conditional x1 | x2 is
Gaussian with parameters:

x1 | x2 ⇠ N (x1 | µ
00, �00) (A.24)

µ 00 = C�1 (µ 0 � u) (A.25)
�00 = C�1�0C�> (A.26)

A.2.1 Concentrated Gaussian Priors with
Gaussian Likelihoods

In this section, we show that Concentrated Gaussian priors on the Lie
Group SE(D) coupled with multivariate Gaussian observation models
have Gaussian conditionals for the translation component.

Let a,b, c, µ 2 SE(D) where each contain a rotation component R
and translation component d with notation,

a =

✓
Ra da
0 1

◆
b =

✓
Rb db
0 1

◆
(A.27)

and similarly for c, µ. These can be viewed as linear operators on ho-
mogeneous coordinates. Let � 2 RD be a point and E 2 RD⇥D be a
covariance matrix. For vector� , let �̃ be the projection of� into homo-
geneous coordinates (append 1). For covariance �, let �̃ be the projec-
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tion of � into homogeneous coordinates (append a 0 row and column).
Consider the following distribution, for � a covariance in the tangent
plane about µ:

p(b | �,a,b) / NL (b | µ, �)N
⇣
�̃ | abc 0̃, (abc) Ẽ (abc)>

⌘
(A.28)

= N
⇣
Logµb | 0, �

⌘
N

⇣
a�1�̃ | bc 0̃, (bc) Ẽ (bc)>

⌘
(A.29)

= N
�
log

�
µ�1b

�
| 0, �

�
(A.30)

N
⇣
a�1�̃ | bc 0̃, (bc) Ẽ (bc)>

⌘
(A.31)

= N

  
V �1µ�1bdµ�1b

�µ�1b

!
| 0, �

!
(A.32)

N
�
R>a (� � da) | db + Rbdc (RbRc )E (RbRc )

>
�

(A.33)

= N

  
V �1µ�1b

⇣
R>µ

�
db � dµ

� ⌘
�µ�1b

!
| 0, �

!
(A.34)

N
�
R>a (� � da) | db + Rbdc (RbRc )E (RbRc )

>
�

(A.35)

Homogeneous coordinates are used up to Eqn. (A.31), then dropped in
Eqn. (A.33). Observe that Eqn. (A.33) is of the form:

N
✓✓

Cdb + u
�

◆
|

✓
0
0

◆
,

✓
�11 �12
�21 �22

◆◆
N (z | db + �,�) (A.36)

where

C = V �1µ�1bR
>

µ u = �Cdµ z = R>a (� � da) (A.37)

� = Rbdc � = (RbRc )E (RbRc )
> � = �µ�1b (A.38)

The conditional p(db | Rb ,�,a,b) is proportional to Eqn. (A.36), which
is of the form of Eqn. (A.20), andC,u, z,�,�,� are all computable given
Rb ,�,a,b (and C is invertible), hence p(db | Rb ,a,b) = N (db | µ 0, �0)
for some µ 0, �0. Then,

p(db | Rb ,�,a,b) / N (db | µ 0, �0)N (z | db + �,�) (A.39)
/ N (db | µ 00, �00) (A.40)

where Eqn. (A.40) follows from Eqn. ( A.39) because it is a linear Gaus-
sian system, hence is itself proportional to a Gaussian with some mean
and covariance µ 00, �00 (see [142], Ch. 4).

A.2.2 Translation Full Conditionals

In the following, letxt�1, xt , xt+1, {�k , �(t�1)k , �tk , �(t+1)k }Kk=1, I 2 SE(D)
with rotation and translation components de�ned similarly to Eqn. (A.27).
Let {�tn}Nt

n=1 2 R
D . Let {Ek }Kk=1 2 R

D⇥D be observation covariances
in RD and Q,W , {Sk }Kk=1 be covariances in the Lie algebra se(D). Let
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{ztn}
Nt
n=1 be assignments of observations to one of K instantiated com-

ponents. The full conditional body frame translation update is of the
form:

p(dxt | Rxt , xt�1, xt+1,Q, {�k , �tk }
K
k=1, {�tn, ztn}

Nt
n=1 (A.41)

/ NL (xt | xt�1,Q)NL (xt+1 | xt ,Q)
Nt÷
n=1

(A.42)

N
⇣
�̃tn | xt�k�tk 0̃, (xt�k�tk ) Ẽk (xt�k�tk )

>

⌘ I(ztn=k )

The full conditional for the k th canonical part translation update is of
the form:

p(d�k | R�k ,Wk , {xt , �tk , {�tn}
Nt
n=1}

T
t=1, Ek ) (A.43)

/ NL (�k | I ,W )

T÷
t=1

Nt÷
n=1

(A.44)

N
⇣
�̃tn | xt�k�tk 0̃, (xt�k�tk ) Ẽk (xt�k�tk )

>

⌘ I(ztn=k )

In both of the above cases, the concentrated Gaussians have Gaussian
conditionals for the translation component, and combine with a prod-
uct of Gaussian likelihoods, yielding a Gaussian posterior for transla-
tions dxt ,d�k (per Appendix A.2.1).

Suppose �tk has dynamics:

�tk =

✓
R�tk d�tk
0 1

◆
(A.45)

=

 
ExpR�(t�1)k �tk A d�(t�1)k + B mtk

0 1

!

where
(mtk ,�tk ) ⇠ N (0, Sk ) (A.46)

Then p(d�tk | R�tk , �(t�1)k ) is of the form Eqn. (A.20) with C = B,u =
A d�(t�1)k . The conditional p(d�tk | R�tk , �(t+1)k ) has a similar Gaussian
form. Hence, full conditional translation updates ford�tk have a similar
structure to the above object and canonical part translation updates
and are themselves Gaussian.

A.3 Stabilized RandomWalks

The random walk model is one of many models that approximate the
dynamics of moving objects in tracking applications [122]. For xt 2 R,

x0 = 0 (A.47)
xt = xt�1 + qt qt ⇠ N(0,� 2

) (A.48)
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Observe that xt has moments,

E[xt ] = E[xt�1] + E[qt ] (A.49)
= 0 (A.50)

Var(xt ) = Var(xt�1) + Var(qt ) + 2Cov(xt�1,qt ) (A.51)
= Var(xt�1) + � 2 + 0 (A.52)
= t� 2 (A.53)

so that it evolves about the origin but,

lim
t!1

Var(xt ) = 1 (A.54)

causing it to wander in�nitely far o�. We can stabilize this random
walk so that it has asymptotically-bounded variance with the follow-
ing modi�cation, where a 2 R,

x0 = 0 (A.55)

xt =
p
a xt�1 +

p
1 � a qt qt ⇠ N(0,� 2

) (A.56)

which has moments:

Figure A-1: Random walks. In all cases,
qt ⇠ N(0,� 2

) for � = 10.0.
(Top) Unstable
xt = xt�1 + qt .
(Middle) Stable (a = 0.001)
xt =

p
a xt�1 +

p
1 � a qt

(Bottom): Stable (a = 0.999)
xt =

p
a xt�1 +

p
1 � a qt

Observe that the unstable random walk
wanders arbitrarily far from the origin
whereas the stable random walks gen-
erally stay with±3� of the origin. Stabi-
lized randomwalks with a ! 0 increas-
ingly look like the IID drawsqt whereas
a ! 1 are increasingly smooth.

E[xt ] = E[xt�1] + E[qt ] (A.57)
= 0 (A.58)

Var(xt ) = E[x2t ] + E[xt ]
2 (A.59)

= E[x2t ] + 0 (A.60)

= E[(
p
a xt�1 +

p
1 � a qt )2] (A.61)

= a E[x2t�1] + (1 � a) �
2 (A.62)

= (1 � a) � 2
t�1’
i=0

ai (A.63)

Taking the limit, we have,

lim
t!1

Var(xt ) = lim
t!1

(1 � a) � 2
t�1’
i=0

ai (A.64)

= (1 � a) � 2 lim
t!1

t�1’
i=0

ai (A.65)

= (1 � a) � 2 1
1 � a

for � 1 < a < 1 (A.66)

= � 2 (A.67)

where Equation A.66 follows because the sum in Equation A.65 is a
geometric series, which converges for�1 < a < 1. Thus, we can design
a stabilized random walk with arbitrary variance by choosing 0  a <
1. Figure A-1 visualizes unstable and stable randomwalks for � = 10.0.

Stabilized random walks can be extended to arbitrary dimension.
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If xt 2 RD then the the above results hold for,

xt = A xt1 + B qt (A.68)

where qt ⇠ N(0, �) and:

A = diag
�p
a, . . . ,

p
a
�

(A.69)

B = diag
⇣p

1 � a, . . . ,
p
1 � a

⌘
(A.70)

� = diag
�
� 2, . . . ,� 2� (A.71)

which is a special case of the algebraic Ricatti equations and has a
solutionwhenAhas eigenvalues less than 1 (which the above satis�es).

The parts modeling in Chapter 3.4 adopts a stabilized randomwalk
for parts that orbit about a common body frame of reference so that
they do notwander arbitrarily far away. The covariance for theirmove-
ment is inferred by the model. We found this approach to reduce iden-
tity switching in the parts. In particular, early on in inference when
parts are not well-�tted, the observation sets would make rapid mo-
tions that would be best explained by only small motions of the parts.
Without be encouraged to stay proximate to some frame of reference,
the model would �nd it better to explain that the parts frequently
“snapped” across one another in fewer large motions so that overall
part motion was as small as possible. Stabilizing parts about a frame
of reference discouraged this wandering and snapping behavior.

A.4 Switch InferenceGeneralize ExtendedHMM
Proposals

Switch proposals generalize the Extended HMM (EHMM) proposals of
[144] by permitting discretizations that depend on the latent space. In
brief, EHMM proposals compose an inference method that helps ex-
plore a posterior distribution by proposing a discretization of latent
states (called "pool states") over time. A hidden Markov model is then
de�ned over the pool states and a joint sample drawn using forward-
�ltering, backward sampling. Crucially, the discretization sampled by
an EHMM proposal includes the current latent state, butmust not oth-
erwise depend on it. If it does, detailed balance is lost because calculat-
ing the reverse move probability would require a di�cult integration
over the latent space.

In contrast, Switch proposals sample from a discretization that de-
pends on the current latent state while maintaining detailed balance.
In the nomenclature of EHMM proposals, the "pool states" of JPT’s
Switch proposal are permutations of latent state x, z. JPT then samples
from the generative model of an HMM that contains no future infor-
mation; thus, no backwards pass is required. We note that the Switch
proposal always contains the current state as represented by the iden-
tity permutation over all times.
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Figure A-2: Observations� (black points) with two modes (blue, green objects crossed
or not). Shading indicates marginal posterior trajectory variance. (Left): Switch state-
ments that leave no future associations �xed have strong ability to explore modes
because future associations do not force an outcome. (Right): Switch statements that
leave future associations �xed (from the �nal timestep) will favor themodes supported
by those �xed associations.

Switch proposals can easily be constructed to contain future infor-
mation by restricting switch times � so that some future associations
from the sample setK remain �xed. Doing so causes a need for future
information to propagate backward. We found that doing so without
being careful about which associations to leave �xed impairs the abil-
ity of Switch proposals to explore di�erent modes as future informa-
tion encouraged the current sample to remain in the same mode. See
Figure A-2 for an example. Backward propagation is desirable when
future information comes from annotations since they are intended to
reduce posterior uncertainty. But, in the absence of annotations, future
information in the form of restricted Switch times is not desirable.

A.5 Change of Basis

For basis E, F represented as non-singular matrices, we de�ne F =
E TE F where TE F is called the change of basis from E to F . Then, for
a point � , we want to �nd �E,�F , the coordinates of � in bases E, F
respectively:

� = E�E = F�F = E TE F�F

Hence, E�E = E TE F�F and so �E = TE F�F . Note the possibly confus-
ing detail that the matrix representing “the change of basis from E to
F ” actually takes coordinates from basis F into coordinates in basis E
(when the matrix is on the left and the coordinates are on the right, as
is common). The manner in which this can be called a change of ba-
sis “from E to F ” is that we compose basis E with post-multiplication
of TE F to yield basis F . It changes bases in the manner the wording
would suggest, but changes coordinates between bases in the opposite
direction than the wording would suggest.

Chapter 3.4 de�nes a parts model where xt ,�k , �tk 2 G = SE(D)
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for time t , part k . Each can be interpreted as a basis so that,

xt �k �tk (A.72)

is a change of basis from world coordinates to part coordinates. For
� 2 RD , the operation,

xt �k �tk

✓
�
1

◆
(A.73)

takes homogeneous vector
✓
�
1

◆
from part coordinates to world coor-

dinates. Understanding that, “a change of basis fromworld coordinates
to part coordinates,” actually takes part coordinates to world coordi-
nates in reverse order signi�cantly aids understanding.
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