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Abstract

Mutual information (MI) is a commonly adopted utility function in Bayesian opti-
mal experimental design (BOED). While theoretically appealing, MI evaluation
poses a significant computational burden for most real world applications. As a
result, many algorithms utilize MI bounds as proxies that lack regret-style guar-
antees. Here, we utilize two-sided bounds to provide such guarantees. Bounds
are successively refined/tightened through additional computation until a desired
guarantee is achieved. We consider the problem of adaptively allocating computa-
tional resources in BOED. Our approach achieves the same guarantee as existing
methods, but with fewer evaluations of the costly MI reward. We adapt knapsack
optimization of best arm identification problems, with important differences that
impact overall algorithm design and performance. First, observations of MI re-
wards are biased. Second, evaluating experiments incurs shared costs amongst
all experiments (posterior sampling) in addition to per-experiment costs that may
vary with increasing evaluation. We propose and demonstrate an algorithm that
accounts for these variable costs in the refinement decision.

1 Introduction

In many analysis problems the data collection process is subject to resource limitations. These
limitations arise in a variety of ways, including limits on explicit costs, selection size, energy
expenditures, time expenditures, and limits on computation. The framework of Bayesian optimal
experimental design (BOED) judiciously allocates limited resources by identifying a sequence of
designs that are maximally informative about a quantity of interest. This optimization of resources is
not unique to the design of experiments. Indeed, the decision making task which underlies BOED
is analogous to that of other domains, owing to its significance: sensor planning [14, 27], active
learning [8, 25], multi-armed bandit best arm identification [19], among others.

Various measures exist to assess the information content of a design. Following classical foundations
in BOED [3, 20, 2], this work considers mutual information (MI) as a design utility. MI quantifies
the expected reduction in posterior uncertainty provided by an experiment, and offers a number of
advantages to alternative information measures. Most importantly, it is invariant to deterministic
mappings under additive noise [18]. By contrast, classical measures based on Fisher information
(e.g. A-, D-, E-, etc. optimal design) have function-specific biases. Indeed, MI equates to D-optimal
design for normal linear models in the classic formulation of BOED [6, 4]. All information measures,
however, pose unique computational challenges for even moderately complex latent variable models.
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Owing to the intractability of exact MI evaluation, many practical BOED implementations use
estimates or bounds to serve as proxies for the information reward. Sample-based estimates of
MI can be computationally prohibitive since drawing samples relies on inference to incorporate
experimental results from the previous stage. Naïve estimates require many samples to achieve
sufficient accuracy [24]. While there are approaches that mitigate this issue, e.g. [29], sample-based
approximations quickly become challenging for problems with large action sets or high dimension.
Alternatives to sample-based estimates include the use of variational inference combined with
variational bounds on MI [22] and sample-based variational upper or lower bounds on MI [11, 12, 7].
However, the impact on performance is unknown for these MI proxies. For example, it is possible that
experimental choices may be dominated by tighter bounds in favor of higher rewards. Consequently,
the resulting selection may be arbitrarily bad as compared to the optimal experiment.

In contrast to existing BOED methods that use lower or upper bounds as plug-in estimates of MI,
this work proposes using two-sided bounds to provide guarantees on performance relative to optimal
(e.g. regret). Guarantees allow us to identify when low-fidelity bounds suffice to identify high-quality
designs, leading to computational savings. Furthermore, they allow for an iterative approach that
targets a specified performance level by tightening/refining bounds with additional computation. We
adaptively allocate resources to refine the bounds on specific designs in a manner sensitive to the
computational costs of reward evaluation. Unlike previous methods, this work considers both the
costs and value associated with iterative refinement of MI bounds. This cost-aware allocation allows
us to trade off computational resources with fidelity of the reward evaluation. By formulating resource
allocation as a knapsack problem, we optimize the trade-off between computation and tightness of
the bounds while achieving guarantees on the optimality of the selection.

Contributions: This work makes a number of contributions to the field of experimental design: (1)
We incorporate both lower and upper bounds on the intractable MI utility into BOED to provide
performance guarantees relative to the optimal design and show how they can be maintained with
minimal additional computation. (2) We introduce a cost-sensitive sequential optimization that
iteratively refines bounds to target a desired performance level. (3) We formulate a greedy knapsack
optimization that elegantly trades off performance for computation. (4) Finally, we evaluate our
BOED method against adaptive allocation techniques in Gaussian models as well as the challenging
problem of multi-target tracking.

2 Sequential Bayesian Experimental Design

Sequential Bayesian optimal experimental design (BOED) seeks to identify a series of experiments
that yield the most information about an unknown quantity of interest, x. At time t, observations yt are
driven by the choice of experiment design at ∈ {1, . . . , A}. Intuitively, the design at parameterizes a
likelihood model pat(yt | x). Assuming measurements are conditionally independent, the posterior
given a history of past observation/design pairs DT = {(yt, at)}Tt=1 is given by,

p(x | DT ) ∝ p(x)

T∏
t=1

pat
(yt | x). (1)

At each time t sequential Bayesian design selects the experiment that maximally reduces a measure
of posterior uncertainty. In particular, we maximize the mutual information (MI) as in [20]:

a∗t = arg max
a

Ia(X;Yt | Dt−1) , H(X | Dt−1)− Ha(X | Yt,Dt−1), (2)

where Ha(X | Y,D) , −
∫
p(x, y | D) log pa(x | y,D) dx dy is the conditional differential entropy,

and H(X | D) , −
∫
p(x | D) log p(x | D) dx the posterior entropy. The sequential greedy opti-

mization in Eqn. (2), while myopic, avoids the complexity associated with finding an optimal design
policy. Even then, greedy sequential experimental design is complicated since MI lacks a closed-form
solution in all but trivial cases. This requires the use of proxies for the MI reward, which we discuss
next. The procedure for sequential design with a sample-based estimator is outlined in Alg. 1.
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Algorithm 1 Sequential Bayesian Experiment Design
Input: max samples Nmax

Initialize data: D ← ∅
for t = 1 to T do

Draw Nmax samples: {xn, yn}Nmax
n=1 ∼ p(x, y | D)

for a = 1 to |A| do
Approximate MI from samples: Îa(X;Y | D)

end for
Maximize proxy: â∗ ← arg maxa Îa
Return: â∗
Run experiment, collect data: ya ∼ pâ∗(y)
D ← D ∪ ya

end for

2.1 Calculating and Bounding Mutual Information

The MI measure in Eqn. (2) is notoriously difficult to compute [21]. To highlight the difficulty we
drop explicit dependence on time and design for brevity. The conditional entropy is given by,

H(X | Y,D) = E
[
− log

p(x, y | D)

p(y | D)

]
. (3)

Evaluating Eqn. (3) requires pointwise evaluation of the posterior predictive distribution
p(y | D) =

∫
p(x | D)p(y | x) dx, a posterior expectation that typically lacks a closed-form. MI can

be bounded using any unbiased estimator E[p̂(y)] = p(y | D) of the posterior predictive density. By
Jensen’s inequality we have E[log p̂(y)] ≤ log p(y | D). Given samples {xn, yn}Nn=1 ∼ p(x, y | D)
the nested Monte Carlo estimator yields the known lower [26, 12] and upper [23, 11] bounds (l , u),

l =
1

N

N∑
n=1

log
p(yn|xn)

1
N

∑N
m=1 p(yn|xm)

, u =
1

N

N∑
n=1

log
p(yn|xn)

1
N−1

∑
m 6=n p(yn|xm)

, (4)

which hold in expectation: I(X;Y ) ≥ E[l ] and I(X;Y ) ≤ E[u]. Because the bounds differ by one
sample-point in the denominator, minimal additional computation is needed to obtain both bounds as
compared to a single bound, a property we will exploit in Sec. 3.

2.2 Challenges of Proxy-Based BOED

Given the difficulty of computing MI, a lower l or upper u bound is commonly used as a proxy
in BOED [29, 24, 11, 23]. Designs are sequentially chosen by maximizing the chosen proxy Îa,
as in: â∗t = arg maxa Îa. The bounds in Eqn. (4) become arbitrarily tight as N → ∞, and can
therefore be refined with additional computation (i.e. drawing more samples). However, the use of
single-sided bounds as an MI proxy poses several problems. In particular, it is impossible to ensure
performance guarantees on information gain as the proxy may reflect the bound gap rather than the
MI reward. As seen in Fig. 1, two proxies using the same budget have significant differences in
quality that also depends on the problem structure; a single budget specification for all cases yields
wasted computation or poor performance. Additionally, bound refinement is limited to the naïve
allocation of samples without knowledge of expected improvement in the chosen design quality.

3 BOED with Cost-Sensitive Iterative Refinement

In this section we outline our framework for Bayesian optimal experimental design with iterative
refinement (BOEDIR) of the bounds. It differs from the standard framework of Alg. 1 in the inclusion
of two-sided bounds, the provision of a performance guarantee relative to optimal, and the incremental
allocation of computation to tighten bounds of select designs. BOEDIR admits any bounds on MI
and allows for specification of a performance metric for termination.

The BOEDIR framework is summarized in Alg. 2. Let SelectRefine be any algorithm that returns
R, a set of designs for refinement. First, a minimal amount of computation is used to (loosely)
bound every design. This may suffice to exclude some designs from further computational resources.
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Figure 1: Realized Performance Across Motifs in BOED. Top-row: Three distributions over MI rewards
characterize different problem structures or “motifs”. Bottom-row: Median and quartiles performance (informa-
tion gain relative to optimal) under proxy-based BOED framework for two proxies under various budgets: lower
bound (bed-lb) and upper bound (bed-ub). Motifs are: scarce mostly uninformative (left), broad similarly
informative (middle), and abundant mostly informative (right). Performance varies greatly depending on the
proxy used and the problem structure, leading to wasted compute cycles when the specified budget is too large
(scarce with bed-lb) or poor performance when not large enough (abundant with bed-ub).

Algorithm 2 BOED with Iterative Refinement of Bounds
Input: target τ , metric g(l , u), max resources Cmax

Initialize: data D ← ∅
for t = 1 to T do

Initialize: perfMet = false, cost C = 0, refinement setR = A
repeat

for a ∈ R do
Refine bounds on MI: la, ua // Eqn. (4)
Update cost: C ← C + ca // Eqn. (8)

end for
Update refinement set: R← SelectRefine({la, ua, ca}|A|a=1) // Eqn. (7)
Evaluate guarantees: {ga = g(la, u\a)}a∈A // e.g. Eqn. (5)
Highest guarantee: g∗ ← maxa ga, â∗ ← arg maxa ga
Test requirement: perfMet← g∗ ≥ τ

until perfMet is true or C > Cmax

Return: g∗, â∗
Run experiment, collect data: D ← D ∪ yâ∗

end for

We then iteratively select design(s) to refine (R ← SelectRefine), expend computation to tighten
their bounds (la, ua)a∈R, and update the performance guarantee. This continues until the target
performance is met or the budget on resources is exhausted. We propose a cost-aware algorithm
for SelectRefine based on the greedy knapsack algorithm and compare against two bandit-style
alternatives in our experiments. Mechanisms for bound refinement vary depending on the form of the
bound: drawing additional samples can tighten sample-based bounds while performing additional
rounds of gradient descent or broadening the variational class can tighten variational bounds. Here,
we focus discussion on the bounds of Eqn. (4) but provide further discussion of alternative bounds
and their refinement and costs in the Supplemental. We now describe the performance guarantees,
costs that arise with bound refinement, and refinement selection in greater detail.

Performance Guarantees Let g(Ia, Ia∗) be a metric that measures the performance of design a
relative to the optimal design a∗. Performance metrics are increasing in Ia and decreasing in Ia∗ .
Relevant metrics depend on the problem at hand so we allow for arbitrary g(Ia, Ia∗) but will develop
discussion for two common metrics, negative regret and relative optimality:

gregret(Ia, Ia∗) = Ia − Ia∗ gpct(Ia, Ia∗) =
Ia
Ia∗

. (5)

While we cannot evaluate the performance metric since we do not know Ia and Ia∗ , we can bound it
using MI lower and upper bounds (la, ua)a∈A to obtain a performance guarantee for every design,

gregret(Ia, Ia∗) ≥ gregret(la, u\a) gpct(Ia, Ia∗) ≥ gpct(la, u\a) (6)
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where u\a = maxk∈A\a uk is the highest upper bound, excluding design a. Thus, by having upper
and lower bounds on designs we can ensure sufficiently high quality selections.

3.1 Knapsack Refinement

To identify designs that rapidly approach the target performance while using as few resources as
possible, we adapt the greedy knapsack algorithm [9]. Using the knapsack greedy heuristic, our
approach allocates computation towards the design with the highest value-to-cost ratio, known as the
marginal utility. Specifically, the value of refining design a is the improvement ∆ag

∗ it provides on
the highest performance guarantee g∗ = maxa ga. Costs ca are associated with refinement of each
bound and can vary by experimental design or even with degree of refinement. We select the design
with highest marginal utility for bound refinement:

R = arg max
a

∆ag
∗

ca
. (7)

Costs for Sample-based Bounds We maintain a set of joint posterior samples X and observation
samples Ya. When design a is selected for refinement, an additional η observation samples are
drawn, each with cost cy. The updated sample count is N = |Ya|+ η. Posterior samples each with
cost cp represent a shared cost as they can be used for all design bounds. They are drawn only
when the updated observation sample count exceeds the existing posterior sample count, N ≥ |X |.
Lastly, given the nature of the nested bound estimates of Eqn. (4), the evaluation of bounds depends
quadratically on the number of samples N with cost cbound = d0 +Nd1 +N2d2. The net cost is

ca = ηcp · 1N≥|X| + ηcy + cbound. (8)
While these parameters cy, cp, d0, d1, d2 are dependent on the problem, inference procedure, and
other factors, they are usually readily estimated using any number of methods for measuring code
performance, including functions that measure wall time. The coefficients of the bounding function
can be estimated by a quadratic fit to timing measurements at various sample sizes. Alternatively,
one could learn these parameters online; measuring and adaptively estimating the computational cost
adds little computation.

Value of Refinement Let ga = g(la, u\a) be the performance guarantee on design a for the metric of
interest (e.g. negative regret). We are interested in refining bounds to improve the highest guarantee
g∗ , maxa ga. For computational simplicity, we use a first-order approximation to the change in g∗
assuming a nominal update to lower/upper bounds (∆la,∆ua) and expand using the chain rule:

∆ag
∗ =

∂g∗

∂la
∆la +

∂g∗

∂ua
∆ua =

∑
b

∂g∗

∂gb

∂gb
∂la

∆la +
∑
b

∂g∗

∂gb

∂gb
∂ua

∆ua. (9)

Let us consider ∂gb
∂la

and ∂gb
∂ua

in detail. Recall the design’s guarantee ga = g(la, u\a) depends on its
own lower bound la and the maximum upper bound of other designs u\a = maxk∈A\a uk. Thus,
tightening la only improves ga (i.e. for b 6= a, ∂gb∂la

= 0) and tightening ua potentially updates gb
through u\b for b 6= a (i.e. ∂ga

∂ua
= 0 and ∂gb

∂ua
= ∂gb

∂u\b

∂u\b
∂ua

). Substitution into Eqn. (9) gives,

∆ag
∗ =

∂g∗

∂ga

∂ga
∂la

∆la +
∑
b6=a

∂g∗

∂gb

∂gb
∂u\b

∂u\b

∂ua
∆ua. (10)

Both g∗ = maxa ga and u\b = maxk∈A\b uk are discontinuous maximum functions which have poor
behavior in a first-order approximation. Consider the following example where design a has guarantee
close to the highest, ga = g∗−ε. Updating its lower bound can cause it to overtake the current highest
guarantee and improve g∗. However, the gradient of max gives ∂g∗

∂ga
= 0, incorrectly suggesting no

impact on g∗ from updating la. We instead evaluate partials for max based on a standard smooth
approximation to max: LogSumExp (LSE) which yields softmax gradient, ∂g∗

∂ga
= exp(ga)∑

a′ exp(ga′ )
. The

remaining partials ∂ga
∂la

, ∂ga
∂u\a

depend on the choice of metric. For the aforementioned metrics, they are
∂gregret,a

∂la
= 1,

∂gregret,a
∂u\a

= −1 and ∂gpct,a

∂la
= 1

u\a
,
∂gpct,a

∂u\a
= − la

u2
\a

. Lastly, we specify the nominal

update to the upper and lower bounds as a fraction γa,u , γa,l , respectively, of the difference between
the existing upper and lower bounds: ∆ua = γa,u ∗ (ua− la). We adaptively estimate these fractions
from observed updates to the bounds using an exponentially weighted moving average.
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3.2 Relation to Best Arm Identification Multi-armed Bandits

Optimal design with consideration to limitations in resources has been studied in best-arm identi-
fication (BAI) problems for multi-armed bandits (MAB) [5]. This setting optimizes simple regret
rather than cumulative, thereby decoupling resources from rewards and eliminating the exploita-
tion/exploration trade-off considerations of standard MAB [15]. Key differences separate BAI from
our setting. First, BAI costs are typically treated as constant and uniform across arms, with some
exceptions [13, 28]. Second, BAI typically assumes unbiased observation of the reward (one notable
exception being [16]). Third, we allow for computational expenditures shared across arms (i.e.,
inference to sample latent parameters). Despite the different assumptions, we can still utilize BAI
algorithms within our framework as a refinement selection algorithm with the caveat that existing
guarantees from BAI do not hold in our setting. We will evaluate two styles of BAI algorithms that
achieve optimal sample complexity under fixed confidence [15]: action elimination (AE) [10] and
lower upper confidence bound (LUCB) [17]. We do not consider UCB [1] which, when applied to
BAI problems, can be overly exploitative [15].

4 Experimental Results

We evaluate performance in a Gaussian Markov Random Field (MRF) model which allows for
exact evaluation of MI. In this setting, BOEDIR with refinement selection based on marginal
utility (mu) performs comparably to non-iterative proxy-based BOED that utilizes either the lower
(bed-lb) or upper bound (bed-ub) in Eqn. 4 as a proxy. Within the iterative framework, we
additionally compare mu against two alternative strategies for refinement selection: action elimination
(ae) and lower upper confidence bound (lucb). AE maintains a set of potential optimal arms
and uniformly refines the set. We define that set as designs with upper bound greater than the
highest lower bound R = {a : ua > maxa′ la′}. LUCB, a variant on UCB, selects two arms for
refinement: the design with the highest performance guarantee â∗ = arg maxa′∈A ga′ and the design
of the remaining with highest upper bound ā = arg maxa′∈A\â∗ ua′ ,R = {â∗, ā}. Finally, we
consider the more challenging problem of track ambiguity in multi-object tracking (MOT) where
we seek informative annotations to resolve the ambiguities. We obtain computational savings over
an alternative refinement approach and achieve performance comparably to a proxy-based approach
utilizing the full computation budget.

4.1 Gaussian MRF

For analysis purposes, we evaluate performance on a tree-structured Gaussian MRF. In this setting, MI
can be computed exactly, thereby allowing for comparison of realized performance. We demonstrate
our approach under three different motifs, or problem structures, characterized by their distributions
over MI shown in Fig. 1 and at various relative costs for posterior inference since this cost is highly
implementation and problem dependent. We consider posterior costs cp that are 100, 10, 1, and 0.1×
the cost cy of sampling ya while holding cy fixed.
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Figure 2: Performance Against Proxy-based Baseline. Median and quartiles from 50 random trials of
realized performance for three motifs. We compare our approach (mu) against two proxies, bed-lb and bed-ub,
in the standard BOED framework subject to the same budget, Cmax = 500 (left) and Cmax = 1000 (right).

Consider a tree-structured GMRF G = (E ,V) with edges E , nodes V = Vx∪Vy , and joint probability,
N (x | mx,Σx)

∏
(s,a)∈E:s∈Vx,a∈Vy N (ya | Caxs, σ

2
a). Latent nodes xs are 2D Gaussian random

variables and observations ya are scalar. The likelihood model is defined over a set of random linear
projections with parameters {Ca}Aa=1 and noise variance {σ2

a}Aa=1. At each stage of design the
algorithm must choose the projection maximizing Ia(X;Y ).
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Figure 3: Cost Vs Targeted Performance as Overhead Cost Increases for Three Motifs. Median and
quartiles from 50 random trials of cost at each target performance level for different distributions of MI rewards.
Posterior sampling costs vary from [0.1, 1, 10 100] (left-right). Motifs are: scarce mostly uninformative
(top-row), broad similarly informative (middle-row), and abundant mostly informative (bottom-row). Baselines
ae and lucb perform well at low and high posterior costs respectively whereas mu performs well across cost
ratios. All require equally little computation in scarce as loose bounds suffice to identify many designs as poor.
As more designs yield high information, additional computation is required to refine bounds sufficiently to
achieve the target performance guarantee.

We generate random trees with |Vx| = 50 nodes, each latent node having two randomly generated
candidate projection operators. This results in |Vy| = 100 total candidate experiments to choose from.
We demonstrate the performance guarantee/computation trade-off using the BOEDIR framework
under different problem structures and posterior cost ratios. We do not have experiments explicitly
analyzing the impact of increasing the size of the design set, but expect our approach to yield
greater savings (with respect to baselines) as allocating resources to promising designs is increasingly
important.

Comparison to Standard BOED Framework We evaluate performance when subject to a budget
constraint rather than a target performance guarantee as in the standard BOED framework. Realized
performance under the lower bound proxy (bed-lb), upper bound proxy (bed-ub), and our cost-
sensitive refinement approach (mu) is shown in Fig. 2. Performance is measured as negative regret;
optimal performance is zero, reflecting no loss. mu performs similar well to bed-lb while also
providing a performance guarantee. Ostensibly, one could simply select the better proxy bed-lb for
use in standard BOED. However, it is often challenging to ascertain the quality of the proxy to make
this determination; exact evaluation of MI is possible in few cases such as the Gaussian MRF. Without
awareness of the better proxy, mu incorporates both bounds to obtain performance close to bed-lb
across motifs while also providing assurances on the quality of the selected design. As shown in the
Supplemental, we find this behavior to persist across budget settings and relative posterior costs.

Comparison of Refinement Selection Algorithms in BOEDIR We demonstrate the dependence
of cost required by each refinement selection algorithm on target performance levels for three motifs
in Fig. 3. We again use negative regret as the performance metric such that τ = 0 corresponds to
optimal performance. As the target performance guarantee increases, all algorithms require additional
computational cost to provide the guarantee; cost increases dramatically as the target guarantee nears
optimal. Significant computational savings can be obtained by relaxing the target guarantee.

Our algorithm requires lower or equivalent cost compared to the baselines across all variants in relative
posterior costs, motifs, and target performance guarantee. Comparison across relative posterior costs
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reveals that the baseline BAI algorithms have cost regimes wherein they perform effectively. AE,
by uniformly refining all arms in the set before revisiting any, is inherently conservative towards
incurring overhead. We find that its performance, relative to other algorithms, improves as overhead
becomes more expensive. LUCB on the other hand, hones in on the few arms that appear optimal.
This requires more posterior samples to obtain better quality bounds on those arms. When posterior
inference is cheap, an uncommon occurrence in real world problems, this approach does well. Our
cost-sensitive approach performs well in a range of cost regimes.

Evaluation of the algorithm on different motifs reveals how costs depend on the underlying distribution
of MI. In scarce, all perform similarly well since many poor actions are readily identified as such
even with loose bounds. Only a few actions merit refinement and algorithms perform similarly as
there is little need to be clever in the refinement selection. Broad has more actions that are highly
rewarding, thus additional computation is required to discern a better action from a merely good one.
Lastly, with abundant high reward options, all algorithms require further computation to identify a
sufficiently good one in this challenging motif. Our algorithm sees increasing gains over alternatives
on more challenging motifs, the situations where cost reduction is most necessary.
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Figure 4: Guarantee Vs Budget for ‘Broad’. Median and quartiles from 50 random trials for performance
guarantee at each budget for broad spread in rewards. Posterior sampling cost ratio varies from [0.1, 1, 10 100]
(left-right). Our algorithm consistently provides higher guarantees across various budgets and relative costs.

One can also consider a fixed-budget formulation wherein we optimize the performance guarantee
subject to expending the full computational budget. The dependence of performance guarantee on
budget for the broad motif is shown in Fig. 4. The results for the other motifs are given in the
Supplemental since the same trends hold in this formulation and mirror the results when we target a
performance guarantee: mu performs better or as well as the BAI baselines in all variants of posterior
cost ratio and budget settings except in the simplest motif wherein all algorithms perform similarly.

4.2 Multi-object Tracking

Data association is a challenging problem that arises in a variety of problems including multi-object
tracking (MOT). When formulated as the unique assignment of K measurements to K objects over
T time points, this yields (K!)T possible assignments z. Marginalization over these assignments to
obtain a posterior distribution over joint target states, x quickly becomes infeasible. Instead, methods
such as MCMC sampling on both target states and assignments are used. Analysis often reveals
multiple modes in the posterior since target ambiguity results from objects becoming kinematically
close then separating. We consider the use of labeled associations from an annotator to resolve
ambiguities. Here, we consider an annotator who reports whether two sensor observations arise
from the same underlying object with error probability pa and seek the annotation which maximizes
information of the latent target states. Details for this model are provided in the Supplemental.

We evaluate on a scenario with K = 3 targets that become kinematically confused in "entanglement"
events, shown in Figure 6 (left). There are 2! ∗ 2! ∗ 3! = 24 possible outcomes depending on the
alignment of entering to exiting tracks at each entanglement. These outcomes correspond to modes in
the posterior. Because we cannot evaluate the posterior entropy of the track state, we focus on modes
in the target state posterior to ascertain ambiguity. Following each annotation, we incorporate the
new annotation data and draw 3000 posterior samples. Knowing the major 24 posterior modes, we
map each sample to one of these. The distribution over modes reflects the degree of track ambiguity;
a uniform distribution reflects high ambiguity. We calculate the discrete entropy of this empirical
distribution to quantify the ambiguity and repeat for 50 random trials. Because this problem setting
exhibits high relative posterior sampling costs - 2000× for single-chain MCMC and 125× for 16
parallelized chains, we only compare against ae which performs well in this cost regime.
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Figure 5: Cost Vs Planning round. Median and quartiles from 50 random trials of costs realized for rounds
1-4 of planning using serial (left) or parallelized (right) sampler for target performance of −0.05 (top) and
−0.01 (bottom). bed-lb always utilizes the full budget, Cmax = 400, whereas the iterative approaches ae and
mu utilize (sometimes significantly) less when the problem structure and targeted performance allows for it.

The iterative approaches ae and mu often utilize less than the max budget of 400 as seen in Fig. 5 to
achieve regret-style guarantees of τ = −0.05,−0.01 whereas bed-lb always utilizes the full budget.
Despite sometimes significant reduction in computation (e.g. parallelized, with τ = −0.01), both
iterative approaches achieve performance comparable to full-budget bed-lb, seen in Fig. 6. Over
half the designs do not receive additional evaluation after the initial allocation of computation to
obtain loose bounds under mu. Though it is possible to set a different budget wherein bed-lb uses
comparable computation as the refinement algorithms, this illustrates the challenges of identifying a
meaningful computation budget without knowledge or analysis of the unknown problem structure.
We find that mu yields computational savings over ae in the parallelized sampler. Both perform
similarly in the serial sampler where posterior inference is exceedingly expensive.

Time

Po
sit

io
n

0 1 2 3 4
Planning Stage

0

2

4

M
od

e 
E

nt
ro

py

ae mu bed-lb

Figure 6: Left: Multi-object tracking scenario where K = 3 targets repeatedly become proximate,
causing tracking ambiguities. Right: Median and quartiles of the entropy of the empirical distribution
of posterior modes from 50 random trials following each BOED design stage. Empirical mode
distribution is estimated by mapping each of 3k samples to 24 known posterior modes. Reduction in
mode entropy indicates resolution of track ambiguities arising from entanglements.

5 Conclusion

Through iterative refinement of information bounds we have shown that BOEDIR can adaptively
allocate limited computational resources to efficiently identify high-quality designs. We have chosen
to focus on simple nested Monte Carlo MI bounds for clarity, but note that BOEDIR can use any MI
bounds that can be iteratively refined. Options include sample-based [29, 24], purely variational [22],
or a hybrid bounds [11, 12, 7]. Nevertheless, using simple bounds we find that our adaptive refinement
procedure achieves significant computational savings through cost-aware allocation of resources and
the provision of guarantees that allows for relaxing of the desired performance. Furthermore, in
problem structures where there are few highly informative rewards but many poor ones (akin to the
scarce motif), BOEDIR can provide the greatest benefit while minimizing computational effort.
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Broader Impacts

Despite its promise and longstanding research focus, BOED has seen limited practical utility due to
the difficulties associated with evaluating information measures. Nevertheless, practical algorithms
for effective information retrieval, which reason about uncertainty in a Bayesian context, have
widespread value. This work posits that by accounting for identifiable cost structure, and the judicious
allocation of resources, one can integrate Bayesian reasoning to experimental design in a practical
way. Our approach utilizes readily available bounds and places minimal assumptions on model
complexity. Having emphasized the positive aspects of this work, we acknowledge limitations of the
approach. In particular, we assume that a cost structure is known or otherwise easily estimated. In
practice we find that empirical estimates of costs are easily obtained, but acknowledge that this may
not be true for all cases. Despite any limitations, our approach is broadly applicable and we therefore
expect this work to have significant impact on the practical application of BOED in a wide range of
settings.
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