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Current and proposed remote space missions, such as the proposed aerial exploration of Titan by an aerobot,
often can collect more data than can be communicated back to Earth. Autonomous selective downlink
algorithms can choose informative subsets of data to improve the science value of these bandwidth-limited
transmissions. This requires statistical descriptors of the data that reflect very abstract and subtle
distinctions in science content. We propose a metric learning strategy that teaches algorithms how best to
cluster new data based on training examples supplied by domain scientists. We demonstrate that clustering
informed by metric learning produces results that more closely match multiple scientists’ labelings of
aerial data than do clusterings based on random or periodic sampling. A new metric-learning strategy
accommodates training sets produced by multiple scientists with different and potentially inconsistent
mission objectives. Our methods are fit for current spacecraft processors (e.g., RAD750) and would further
benefit from more advanced spacecraft processor architectures, such as OPERA.
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1. INTRODUCTION

In general, data from spacecraft can be collected at a much higher rate than can
be transmitted to Earth. Bandwidth bottlenecks due to distance, power, visibility,
and competing mission downlinks can significantly limit the lifetime science return
of a mission. As a result, scientists must exercise great care in deciding which
data to collect and transmit to Earth for analysis. For previously observed or static
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environments, such as most planetary surfaces imaged from orbit, data collection may
be scripted so that specific targets are imaged at prearranged times. For unknown
or dynamic environments, scripted data collection strategies may include sampling at
random or periodic intervals. In both cases, relatively little is known about collected
data until it has been downlinked. Returned images may exhibit substantial redun-
dancy, be marred by artifacts, or may not be relevant to current science objectives
[Thompson et al. 2008]. Additionally, scripted observations leave the collection of
remarkable or unexpected data to chance and could miss key features.

These bandwidth constraints motivate onboard data analysis that could recognize
key image content and prioritize the most informative observations for downlink.
Previous work in onboard data understanding has been practiced on rover, satellite,
and submersible platforms, and is well underway for UAVs [Clough 2002]. The Mars
Exploration Rovers can autonomously search for science targets, including clouds and
dust devils [Castano et al. 2008], as well as for rocks of specific size, albedo, and shape
[Estlin et al. 2010]. For the Earth Observing 1 Satellite, hazardous events such as
fires, floods, and volcanic activities are detected and pertinent data downlinked [Chien
et al. 2005]. Terrestrial autonomy includes underwater exploration [Kinsey et al.
2006], mine and cave mapping [Thrun et al. 2005], and also exploration of Mars-like
environments, such as the Atacama [Wettergreen et al. 2008] and Mojave [Calderon
et al. 2008] deserts.

In many cases, it would be useful to complement target detection with represen-
tative sampling [Castaño et al. 2003; Gilmore et al. 2000]. Representative sampling
characterizes the entire dataset by selecting archetypal exemplars from its principal
classes, where these classes are not known or specified in advance. Representative
sampling is formally equivalent to a vector quantization strategy for data compression
[Gersho and Gray 1992]. In practice, one can treat it as a clustering problem in which
a spacecraft groups images according to content and downlinks characteristic exam-
ples of each cluster [Castaño et al. 2007; Hayden et al. 2010]. Figure 1 demonstrates
a graphical example.

Several factors complicate automatic clustering. First, effective performance re-
quires describing the data with numerical features that can be correlated well with
its science content. These features should be invariant to irrelevant differences from
changing imaging conditions or noise. Finding such features and implementing them
in flight software is a difficult process that may need to be repeated for changing
mission objectives. Moreover, interfeature redundancy and correlation can adversely
affect clustering performance. Previous work shows that clustering with different
feature subspaces can dramatically alter selective data-return performance [Hayden
et al. 2010].

We desire a general method for learning an optimal image representation based
on training data. Specifically, we generate many features and then learn a distance
metric that places similar images close together and dissimilar images far apart.
As mission objectives evolve and additional training data becomes available, new
metrics can be trained on Earth. Then, operators can transmit this information to the
spacecraft in the form of relatively compact parameters, such as linear transformation
matrices. Computing distances with the learned metric is equivalent to projecting the
original feature space and subsequently taking Euclidean distances. The resulting
clusters should better reflect the distinctions in science content most relevant to
mission objectives.

Onboard remote science analysis presents an additional complication. Traditional
metric learning and feature selection require an internally consistent and authorita-
tive set of training data. But in remote exploration, such ground truth standards may
not exist. It will almost certainly not be possible to find a single partitioning of the
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Fig. 1. Aerial data automatically clustered into five groups using the features in Section 3. Three repre-
sentative images from each cluster are displayed, as are two outlier images (those furthest from any cluster
centroid).

data that satisfies all mission science goals simultaneously. It will probably be the
case that there are many scientists, each with their own separate science goals, key
distinctions, and clusterings. Relaxing the consistency assumption lets the learning
process fully utilize a training set from multiple scientists and balance any competing
objectives that they have assumed in their training labels.

In this article, we explore efficient metric-learning approaches to selective data re-
turn. We demonstrate that clustering based on metric learning outperforms random
or periodic collection strategies at producing partitions to match those made by sci-
entists. We especially focus on the problem of satisfying multiple, competing mission
objectives. In particular, we extend Linear Discriminant Analysis [Duda et al. 2000]
to handle multi-class data with several inconsistent labelings and show that it out-
performs modern metric-learning approaches in satisfying multiple competing science
objectives. Throughout, we address practical and logistical constraints of implement-
ing a clustering framework for selective data return.

Central to our work is the assumption that the utility of an automatic clustering is
determined by how closely it matches clusterings made manually by scientists. While
intuitive, this is not formally justified, and in this article, it is only demonstrated on a
small terrestrial dataset.

In Section 2, we discuss clustering and metric-learning algorithms in the context
of selective data return. We also introduce Multi-domain Multiclass Linear Discrim-
inant Analysis (MDMC-LDA), a new metric-learning algorithm for handling multiple
competing science objectives. In Section 3, we discuss our terrestrial dataset, labeling
strategy, image features, and clustering performance evaluation strategy. Sections 4
and 5 detail our findings.
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2. APPROACH

2.1. Clustering

Clustering provides scientists with considerable control over how downlink bandwidth
is used. If scientists desire a summary of observed data, they can downlink repre-
sentatives from each cluster. Alternatively, they can reallocate bandwidth to favor
particular clusters that prove consistently interesting. Clustering in a metric space af-
fords additional flexibility by allowing data to be rank-ordered by representativeness.
Data closest to the centroid can be considered more representative, while an image far
from any centroid may be an interesting outlier. Geolocating cluster representatives
and outliers into a terrain map can facilitate subsequent mission planning.

Of the many clustering techniques available [Xu and Wunsch 2005], we focus on
k-means [MacQueen et al. 1967] because it is fast, simple, and well understood. For
dataset X = {x1, . . . , xN}, xi ∈ Rd, k-means randomly defines k centroids {c1, . . . , ck}, ci ∈
Rd. It then iteratively reassigns each x to cluster Ci if ||x − ci|| ≤ ||x − c j|| for j �= i and
recomputes each centroid as ci = 1

|Ci|
∑

x∈Ci
x. K-means terminates to a local minimum

of the sum-of-squares error of each x and its closest centroid ci when no ci change value
and no x are assigned to a different cluster.

By perturbing each x to avoid degenerate cases, Arthur et al. [2009] have shown
that k-means has polynomial runtime in n. In practice, the typical implementation
[Lloyd 1982] often has linear or sublinear runtime [Duda et al. 2000]. If a suboptimal
solution is sufficient, one can alter the algorithm to guarantee such performance. Im-
provements of several orders of magnitude have also been demonstrated: Elkan [2003]
exploits the triangle inequality, while Saegusa and Maruyama [2007] demonstrate an
FPGA implementation running 30 times per second with d = 3, n = 5122, and k = 256.

K-means requires that the number of clusters be determined in advance. This can
be seeded by initial tests on the ground then adjusted throughout the course of a
mission to determine if other values seem more useful. K-means also requires that
careful consideration be given to the image descriptors used to represent each image.
In exploration scenarios, an ideal clustering partitions the images into groups that
reflect current objectives (for example, each cluster could contain images dominated
by a particular topography). Constructing an optimal feature space is a more subtle
challenge that we will investigate further in Section 2.2.

2.2. Metric Learning

Metric learning can tune clustering behavior towards current or dynamic mission
objectives without requiring modifications to flight software. Scientists would man-
ually cluster data returned from the spacecraft. One can use these clusterings to
construct a linear or nonlinear feature transformation that emphasizes their preferred
distinctions. The scientists would transmit the parameters of this transformation
back to the spacecraft1, which would then use it to form a mission-relevant feature
space for cluster analysis of future observations.

Following Xing et al. [2002], we formulate the metric-learning task as follows. Given
two sets of constraints in the form of pairs of similar and dissimilar data, metric-
learning methods seek a projection in which similar data are close together and dis-
similar data are far apart. We describe proximity with the L2-norm: for d-dimensional
vectors u and v, the distance between them is defined as ||(u− v)T I(u− v)||2, where I is
the d × d identity matrix. With metric learning, the identity matrix is replaced with a
positive semidefinite or positive definite transformation matrix A that parameterizes

1The size of the transformation would be the square of the feature space dimensionality in floats–less then
8MB for an unlikely 1,000 dimensions.
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a family of Mahalanobis distances in Rd. A diagonal matrix A simply weights each
dimension. Otherwise, the transformation is equivalent to a rescaling and rotation
of the data. Computing the transformation for each distance computation is equiva-
lent to projecting the feature space and subsequently measuring all distances with the
standard Euclidean metric.

Yang [2007] provides an overview of metric-learning approaches. The foundational
work of Xing et al. [2002] describes metric learning as a convex optimization problem
which minimizes the sums of squared distances between similar data and pushes sums
of squared distances between dissimilar data beyond a threshold. Other more recent
approaches include Neighborhood Components Analysis [Goldberger et al. 2005] which
minimizes the leave-one-out k-nearest-neighbor classification error. Largest-Margin
Nearest Neighbor [Weinberger et al. 2006] also minimizes nearest-neighbor error but
utilizes a largest margin framework that results in a convex optimization problem.
Other metric-learning methods explore nonlinear transformations [Chen et al. 2007],
active learning and Bayesian frameworks [Yang and Jin 2007], and online methods
[Jain et al. 2009]. To establish a baseline, we restrict our attention to linear methods.

2.3. MDA

Classical multiclass linear discriminant analysis (LDA or MDA) projects a d-
dimensional data X = {x1, . . . xN} with labels 1 ≤ li ≤ C : i = 1, . . . , N into a (C − 1)-
dimensional subspace that better separates each of the C classes. The Bayes classifi-
cation error is optimally minimized when the classes are Gaussian and homoscedastic
(having equal covariance matrices). More thorough coverage of MDA can be found in
Friedman [1989] and Duda et al. [2000].

Our notation reflects the fact that the set of training data consists of just one self-
consistent labeling. Let X1 j be the subset of X corresponding to the single labeling’s
jth class. Let n1 j be the number of vectors in the jth class. We define the within-class
scatter matrix as

SW =
1
C

C∑
j=1

cov(X1 j), (1)

where cov(X1 j) is the covariance matrix of the matrix whose columns are the vectors
x ∈ Xij. Let m = 1

N

∑
x∈X x be the total mean of X and

m1 j =
1

n1 j

∑
x∈X1 j

x (2)

be the mean of the jth class. Then, we define the between-class scatter matrix as

SB =
1
N

C∑
j=1

n1 j(m1 j − m)T(m1 j − m). (3)

MDA simultaneously minimizes the projected within-class scatter and maximizes
the between-class scatter. This is equivalent to finding a (non-unique) W that
maximizes

J(W) =
|WT SBW|
|WT SW W| . (4)

The columns of the optimal projection W are the top eigenvectors of S−1
W SB [Duda

et al. 2000]. Note that if dimensionality is high or there are few training samples,

ACM Transactions on Intelligent Systems and Technology, Vol. 3, No. 3, Article 51, Publication date: May 2012.



51:6 D. S. Hayden et al.

then SW may be singular. We avoid this condition with a simple regularization scheme
where the columns of W are generated from (S−1

W +αI)SB. Designers can set α to a small
value or optimize it with cross validation.

Many variations on MDA exist. Duin and Loog [2004], Hamsici and Martinez [2007],
and Qin et al. [2005] relax the homoscedastic requirement. Ye [2006], Chen et al.
[2000], and Howland et al. [2004] do not require nonsingularity. Friedman [1989]
and Guo et al. [2007] provide regularization strategies.

2.4. MDMC-LDA

Space exploration scenarios will often involve multiple teams of scientists with inde-
pendent and possibly competing objectives. This may make MDA impractical since
it requires a single fixed number of classes and a single set of labels. Finding a con-
sensus labeling among all teams might require a challenging negotiation. At worst,
the basic task may be ill-posed if the labelers consider different aspects of the data.
A more reasonable strategy would be to prompt each team to label relevant training
data according to its individual objectives, and then learn a projection which mediated
between them. Our algorithm, Multi-Domain, Multiclass Linear Discriminant Anal-
ysis (MDMC-LDA) extends MDA to account for multiple, possibly inconsistant labels
on multiple, possibly overlapping datasets.

We define a domain as a single independent labeling of the training data. The ith
domain is characterized by a set of d-dimensional vectors with integer labels ranging
from [1, Ci]. We take Xi to be the set of its vectors, with ni = |Xi|. The labels of all
domains are represented by L = {L1, . . . , LD}, where Li = {li1, . . . , lini}. Similarly, Xij

is the vectors in the jth class of the ith domain with nij = |Xij|. Finally, N =
∑D

i=1 ni
represents the total number of data points, each counted as many times as there are
labels supplied for it (alternatively, we could simply say this is the total number of
labels).

Our modification of MDA does not directly compare images across domains, since
these semantic relationships are undefined. Two classes in different domains might
represent the same semantic category, despite having different labels, in which case it
would not be desirable to separate them. However, taken independently, the domains
supply additional training data that can improve performance. Specifically, we treat
each domain as an independent sample of the between-class and within-class sam-
ple matrices. The expectation of these matrices, taken over all domains, provides a
semantically-consistent solution. We define the within-class scatter as

SW = ED

[
1
C

C∑
j=1

cov(Xij)
]

=
1
D

D∑
i=1

1
Ci

Ci∑
j=1

cov(Xij). (5)

Here Ci = max Li and cov(Xij) is the covariance matrix of the matrix whose columns
are the vectors x ∈ Xij. We define the mean of the ith domain and also the mean of the
jth class in the ith domain as

mi =
1
ni

∑
x∈Xi

x, (6)

mij =
1
nij

∑
x∈Xij

x. (7)
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Similarly, we find a separate between-class scatter matrix for independent domains
and average them to produce a final point estimate. This ignores proximity relation-
ships across different domains.

SB = ED

[ 1
D

Ci∑
j=1

ni(mij − mi)T(mij − mi)
]

=
1
N

D∑
i=1

Ci∑
j=1

ni(mij − mi)T(mij − mi). (8)

As in Equation (4), we take the solution to be a W that maximizes the ratio of
between-class and within-class scatter.

J(W) =
|WT SBW|
|WT SW W| . (9)

We again generate the columns of W by the top eigenvectors of (S−1
W + αI)SB, where

the regularization parameter α is determined through cross validation. If D = 1,
then MDMC-LDA degenerates to MDA. Notationally, the i subscripts in MDMC-LDA
can be replaced with 1, and the solution W will be optimal if data are Gaussian and
homoscedastic. For D > 1, we do not expect these conditions will ever be satisfied in
the case of overlapping labels. Informally, though, overlapping labels should push data
with corresponding labels into proximity so that clusters can more naturally form that
better satisfy all objectives. We thus hypothesize that the projected space will improve
overall agreement between multiple labelers, although agreement with any one might
be lower than if MDA were trained on that particular labeling.

3. EXPERIMENTAL METHOD

To demonstrate our clustering approach to onboard data analysis, we use 19 image
descriptors that can be collected in subpolynomial time and use these to cluster im-
ages from an aerial dataset. We investigate correspondence between these automatic
clusterings and manual clusterings created by planetary geologists. We also consider
clusterings that would result from nonadaptive or uninformed data return strategies,
such as random sampling or periodic sampling at regular time intervals. We explore
various alternative metric-learning approaches to improve performance, including the
new MDMC-LDA algorithm.

3.1. Aerial Dataset

Most studies in onboard data understanding have focused on rover and satellite plat-
forms. Here, we investigate aerial exploration scenarios, such as those proposed for
Titan, by a blimp, or for Venus, by a fixed-wing craft [NASA 2006]. In the case of
Titan, an autonomous blimp would likely travel for many kilometers—sometimes for
more than a week—between downlink opportunities and collect a vast number of tra-
verse images over previously unseen and diverse terrain [Elfes et al. 2008]. Selec-
tive data return could help discriminate between its morphological and atmospheric
features, which are known to include hydrocarbon lakes, dried riverbeds, shorelines,
mountainous and smooth desert-like terrain, sand dunes, clouds, and the occasional
crater. Figure 2 shows some examples.

Rather than utilizing terrestrial or Martian satellite imagery, which may not cor-
respond well with expected Titan imagery in color, resolution, or feature diversity, we
simulated an aerial imaging sequence on Titan using 162 terrestrial scenes collected
with a consumer camera at two megapixels during a commercial flight from New York
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Fig. 2. Images of Titan’s morphological diversity as taken from the Cassini satellite and Huygens probe.

to Los Angeles. Figure 1 demonstrates that the dataset primarily contains images
dominated by sky, horizon, or undeveloped land. Some contain clouds, water bodies,
patches of desert, or patches of vegetation.

To construct ground truth data for a discovery-oriented mission objective, we
prompted four planetary geologists to manually group the dataset. All had some back-
ground in remote sensing, but their areas of emphasis differed (e.g., volcanology, pale-
obiology, geology). Images were presented in a graphical interface simultaneously and
in random order. Scientists were allowed to name, rename, create, and delete groups
throughout the session. Directions were provided in the form of the following prompt.

Suppose that the following images were taken of an environment for which
we have little knowledge or data. Furthermore, suppose that you may not
be able to receive all images. Please sort these images into five groups in
such a way that if you could only receive a small number of images from
each group, you could reasonably infer the content of the remaining images
in that group.

Fixing the number of groups to five controlled for strong variations that may have
resulted from scientists pursuing objectives of radically varying complexity.

3.2. Evaluation

We strive to automatically group images in a way that simultaneously agrees well
with all scientist clustering strategies. Perfect correspondence is unlikely, but band-
width utilization–and thus science return–is still improved if autonomous strategies
can group data more effectively than nonadaptive strategies.
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Two uninformed strategies for downlinking images are random sampling, where a
random subset of an image sequence is returned, and periodic sampling, where every
ith image of a sequence is returned. The former strategy amounts to a random clus-
tering, while the latter is equivalent to clustering based on collection order.2 We will
subsequently refer to these strategies as random clustering and periodic or time-based
clustering.

To compare correspondence between clusterings, we use the information-theoretic
adjusted mutual information, which we briefly derive here. Given dataset S =
{s1, . . . , sN} and clusterings

U = {U1, . . . ,UR} and V = {V1, . . . , VC},
where ∩R

i=1Ui = ∅, and ∪R
i=1Ui = S (e.g., the Ui are a partitioning, or clustering, of S, and

similarly for V). Then, the probability that a random data s ∈ S is also contained in
some cluster Ui or in cluster V j is given by the respective equations

Pu(i) =
|Ui|
N

and Pv( j) =
|V j|
N

.

The probability that s is found in both clusters is given by

P(i, j) =
|Ui ∩ V j|

N
.

The mutual information between the two labelings is defined as

MI(U, V) =
R∑

i=1

C∑
j=1

P(i, j )logP(i, j )
Pu(i)Pv( j)

.

Mutual information quantifies how much knowing about one clustering tells us
about the other. Though it is symmetric and nonnegative, it is not upper-bounded
by a constant, and so is of limited utility as a general metric for comparing cluster-
ings. Furthermore, Vinh et al. [2009] demonstrate that mutual information does not
take a constant value when comparing random clusterings and tends to grow with
the number of clusters. They use a hypergeometric model of randomness to derive an
expected value for two random clusterings. This permits a correction similar to the ad-
justed rand index [Hubert and Arabie 1985] that ensures random clusterings produce
a constant value. This correction yields the adjusted mutual information (AMI).

A MI(U, V) =
MI(U, V) − E(MI(U, V))

max(H(U), H(V)) − E(MI(U, V))
. (10)

The entropies of clusterings U, V denote the uncertainty in a data point’s cluster
membership.

H(U) = −
R∑

i=1

P(i)logP(i) and H(V) = −
C∑
j=1

P( j)logP( j).

The denominator in Equation (10) corrects for randomness and serves as a normal-
ization, as otherwise MI(U, V) ≤ min(H(U), H(V)). Furthermore, A MI(U, V) = 0 only

2To see this, note that for N images and k clusters, each cluster will have N/k images, and cluster centroids
will be located at every N/2k images in the sequence. Varying the number of clusters k and returning the
closest image to each centroid selects every ith image, for any i.
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Fig. 3. Two-class clusterings of synthetic data.

when equal to its expected value (e.g., that expected by comparing two random cluster-
ings), and A MI(U, V) = 1 when clusterings U, V are identical. In the experiments that
follow, we use the AMI as a general measure of correspondence between clusterings.

Figure 3 demonstrates the advantages of both our metric-learning approach and
our evaluation metric. Each figure shows two-class clusterings of synthetic data. On
the left, (a) and (c) show four gaussians arranged into two classes such that k-means
is unable to correctly cluster them. On the right, metric-learning algorithms bring all
points of each class into proximity, enabling the desired clusterings. Note that the two
classes in (a) are equal in size while the two classes in (b) are not. This affects the
entropy of each class, which causes mutual information to give different values for (b)
and (d), despite both being clustered perfectly. AMI permits a fair comparison between
the two cases.

3.3. Features

Our primary concern is that image descriptors be fast enough for operation onboard
power-restricted spacecraft computers (discussed in Section 5). To that end, we do not
examine the more common but computationally expensive and higher-dimensional ap-
proaches, such as those based on SIFT features [Lowe 1999], Gabor filters [Grigorescu
et al. 2002], or correlograms [Huang et al. 1997]. Instead, we present 19 low-level,
computationally efficient features that summarize texture, color, and the temporal or-
dering of each image. Except where noted, all features can be computed in linear time
with respect to image size and can be trivially parallelized. Each feature is defined
in Table I; relevant notation and definitions are established in subsections that corre-
spond to the Feature Type column.

3.3.1. Texture. Let I be an m × d × 3 image and I′ be its m × d grayscale. Let I′′
be the resulting binary image from performing convolution with a Sobel operator on
image I′. Let Gy, Gx be the m × d matrices representing vertical and horizontal gra-

dient responses, respectively. Let ∇L =
√

G2
y + G2

x be the m × d matrix representing
gradient magnitudes, and θ = atan2(Gy, Gx) be the m × d matrix representing gradi-
ent orientations. Then, edge density and magnitude can help distinguish smooth from
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Table I. Low-Level Image Descriptors

Feature Type Feature Name Formula
Texture Edge Density 1

md
∑

I′

Mean Gradient Magnitude 1
md

∑∇L
Gradient Magnitude Entropy H(∇L)

Gradient Orientation Entropy H(θ )
Quadrant-1 Frequency Energy

∑
x>0,y>0 N

Quadrant-2 Frequency Energy
∑

x<0,y>0 N

Color Standard Deviation of Band Intensity
√

1
md

∑
(Pj − μ)2 for j = 1 . . . 3

Mean Band Intensity 1
md Pj for j = 1 . . . 3

Min Band Intensity min Pj for j = 1 . . . 3
Max Band Intensity max Pj for j = 1 . . . 3

Time Acquisition Order It

Fig. 4. Statistics such as edge density (visualized by heat maps on the right) taken on an edge image
(middle) can help distinguish smooth (top-left) from rough (bottom-left) terrain.

rough terrain, while gradient magnitude and orientation can provide information on
texture regularity, which can help distinguish periodic textures (e.g., sand dunes, large
expanses of sediment). Figure 4 shows a visualization of the edge densities between
images with smooth and rough terrain.

Let f be the resulting m × d matrix after the 2D Fourier transform on I′, and let
G( f ) = | f |2 be the m × d power spectrum of f . Let the normalized power spectrum be
N = G( f )/

∑
G( f ). Then, taking the energy in the first and second quadrants (which

are symmetric to the fourth and third) can provide good texture discrimination.
The frequency energy statistics were motivated by Liu and Jernigan [1990], which

were found by a survey of 28 low-level frequency space statistics to best discriminate a
subset of the Brodatz textures. The frequency features are an exception to the linear-
time constraint since they require a fast Fourier transform. This is an nlogn oper-
ation, though there are many efficient hardware and software implementations (we
also touch on this in Section 5).

3.3.2. Color. Let Pj be the m× d matrix of pixels in band j of I. Then histogram sum-
marization statistics taken on each band can help distinguish verdant from mountain-
ous terrain, clouded from cloudless skies, and dried river basins from rivers. Figure 5
show an example.

3.3.3. Temporal. For a sequence of images collected in serial, let the acquisition order
It be an integer that represents the temporal ordering of each image.
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Fig. 5. Statistics taken on image histograms (right) can make coarse distinctions in terrain type, for in-
stance, clouded skies (top-left) and undeveloped land (bottom-left).

4. RESULTS

We begin by examining the clusterings performed by each scientist. Figure 6 depicts
class distributions and names for each scientist.

Priorities differed among the scientists. For instance, Scientists 3 and 4 made four
distinctions in atmospheric qualities of the imagery, while Scientist 1 made two dis-
tinctions, and Scientist 2 placed them into a single group. Roughly 40% of labels from
Scientists 1 and 4 focused on atmospheric distinctions, compared to 68% for Scientist
3 and 14% for Scientist 2. All scientists, except for the third, created a group based on
the presence of water, but these comprised only 6% of Scientist 4’s labels, compared to
at least 30% for Scientists 1 and 2.

Many of the scientists’ clusters corresponded for at least some images. For example,
scientists consistently ascribed similar labels to images, such as (a) and (b), where
the horizon was roughly centered and cloud cover was evident. Images, such as (c)
and (d), that contained water bodies were often labeled consistently but only when
there was no horizon or clouds present. The labeling consensus was weaker in the
presence of sky or clouds. While Scientist 2 typically labeled an image as “Hydrology”
if it contained even a very small lake, Scientists 3 and 4 would often favor horizon
and cloud labels as they began to become more prevalent, as can be seen with images
(g) and (h). Unsurprisingly, Scientist 1’s “Desert” label sometimes corresponded with
Scientist 2’s “Mountain” label, and both were often contained within the “Land” labels
of Scientists 3 and 4 (as in images (e) and (f )).

These differences imply that scientists were pursuing different objectives. In follow-
up discussions, some suggested distinctions in atmospherics had been most important,
while others preferred to disambiguate features of the terrain. Table II quantifies the
agreements between scientists by showing the adjusted mutual information between
scientists’ clusterings. Scientists 1 and 3 had the highest agreement, at 0.4232. Scien-
tist 2 appears as an outlier, with the lowest mean agreement among other scientists of
0.184, as compared to agreements of around 0.3 among the remaining scientists. The
overall mean agreement of 0.285 is the expected mean AMI of any human strategy
against the rest; it establishes a milestone for how well autonomous clusterings might
simultaneously correspond to scientists’ clusterings.

We compared the correspondence of manual clusterings with various automated ap-
proaches, including static data return strategies like random or periodic sampling. We
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Fig. 6. Bottom: names and distributions of labels provided by four planetary geologists. Top: images that
highlight partial correspondence among scientists’ labelings (a)–(f ), in addition to some differing objectives
(g)–(h). Note, the color-coated integers above each image denote the class labels assigned by each scientist.
Labels can be referenced by their trailing index.

Table II. Clustering Agreement Among Scientists as Measured by Adjusted
Mutual Information

Scientist 1 Scientist 2 Scientist 3 Scientist 4

Scientist 1 1 0.2492 0.3627 0.4232
Scientist 2 0.2492 1 0.1102 0.1932

Scientist 3 0.3627 0.1102 1 0.3696
Scientist 4 0.4232 0.1932 0.3696 1

Mean Agreement 0.3450 0.1840 0.2810 0.3290 0.2850
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Fig. 7. Mean adjusted mutual information between all scientists’ clusterings and uninformed strategies
(red), unsupervised autonomous strategies (green), and metric-learned autonomous strategies (blue). Al-
though the uninformed and unsupervised strategies do not benefit from training data, all clusterings are
compared over 1,000 trials using the same test set, which comprised 75% of the data.

also considered clustering approaches using the entire feature set, as well as feature
spaces learned by metric-learning strategies based on scientist-labeled training data.
We trained the metric-learning strategies on a uniformly sampled 25% training set,
starting four times at image indices 1 to 4 for multifold cross validation. For each trial,
we performed an automated k-means clustering on the remaining 75% of the data and
evaluated the result using the AMI score. Because k-means results can be sensitive to
initialization, we performed 1,000 randomized runs for each cross-validation subset.

Figure 7 compares mean clustering agreement between all scientists and strate-
gies based on uninformed and autonomous methods. The red uninformed approaches
represent random and periodic sampling. The unsupervised approaches in green rep-
resent strategies that do not benefit from training data. The baseline approach is
simple clustering with all 19 features from Section 3.3. The PCA approach uses prin-
cipal components analysis to reduce dimensionality. The metric-learning strategies
compare neighborhood components analysis (NCA), largest-margin nearest neighbor
(LMNN), multiclass discriminant analysis (MDA), and multi-domain multiclass linear
discriminant analysis (MDMC-LDA). MDMC-LDA used training labels from all scien-
tists. The remaining metric-learning approaches were restricted to learning from a
single set of labels. Experiments validated our intuition that learning would be most
productive on the labels of the first scientist, who had the highest overall agreement
with others. Dimensionality was reduced to d = 2 for PCA, NCA, LMNN, MDA, and
MDMC-LDA. Comparisons were averaged over 1, 000 trials.

Periodic sampling produced a mean agreement of 0.1648. Unsupervised methods
marginally outperforms it at 0.1898 for clustering in 19 dimensions, and 0.1816 for
clustering with PCA. Metric-learning strategies show obvious benefit over periodic
sampling, with correspondence improving from 23% for NCA to 73.5% for MDMC-LDA.
It is interesting to note that the more classical MDA shows marked improvement over
contemporary approaches.

Figure 8 compares mean clustering agreement relative to the first scientist. The
same trends are evident: metric learning significantly outperforms unsupervised
strategies, and both outperform uninformed strategies. All methods show improved
correspondence. Remarkably and counterintuitively, MDMC-LDA significantly out-
performs all other approaches despite having to balance competing objectives. With
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Fig. 8. Mean adjusted mutual information between Scientist 1’s clustering and uninformed strategies (red),
unsupervised autonomous strategies (green), and metric-learned autonomous strategies (blue). Although
the uninformed and unsupervised strategies do not benefit from training data, all clusterings are compared
over 1,000 trials using the same test set, which comprised 75% of the data.

Fig. 9. Effects of metric learning on test data. (a) Shows an unsupervised projection; clusters are overlap-
ping and indistinct. (b) Shows a metric-learned projection. Scientists’ clusters are better-separated in this
synthetic feature space, suggesting these features better capture the science content of interest.

A MI = 0.3662, MDMC-LDA produces a clustering that more closely matches this sci-
entists than do the clusterings of all but one other scientist.

Ideal clustering agreement would approach 1.0, particularly when autonomous clus-
terings are attempting to match a single objective. The relatively low scientist agree-
ment in our results suggests that such high correspondence will not be possible in the
face of multiple mission objectives. Even so, with correspondence nearly double that of
alternative strategies, clustering informed by metric learning could provide substan-
tial gains in science return over a mission’s lifetime. Figure 9 provides some intuition
on what clusters look like in a learned space. Figure 9 (a) displays a 2D projection of
the test set using an unsupervised strategy (PCA) based only on the intrinsic structure
of the data. Figure 9 (b) displays the same data projected with MDMC-LDA. Colors
correspond to labels provided by the first scientist. Except in the case of the sparse
‘Desert’ cluster (comprising 3.7% of the data), cluster compactness and consistency is
substantially improved when data is projected into a space that accounts for the scien-
tist’s preferences. If a cluster representative were downlinked from each cluster (the
image closest to each centroid), then three classes would be accurately identified. And
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even in the case of the red ‘River’ cluster, we would see reasonable behavior in that a
‘Land’ image would be downlinked. In other words, the learned feature space empha-
sizes distinctions in science content that is not obvious from the distribution of base
feature vectors.

5. DISCUSSION

Many current space-based missions, such as the exploration of Mars by the Spirit
and Opportunity rovers, or the imaging of Earth or Mars by orbiters, involve research
groups from around the world, each competing over limited bandwidth. Orbiter tar-
gets are scheduled a year or more in advance. Rover actions and downlink priorities
are debated by teleconference on a daily or weekly basis. In these static and largely
observable environments, competing requests can be individually serviced. In essence,
bandwidth can be distributed among different groups, even if it’s not to the satisfaction
of all involved.

This would not be so easy in a dynamic or previously unobserved environment, such
as Titan. While groups could influence the trajectory of an aerobot, it seems unlikely
that downlink bandwidth could be precisely allocated without target detection capabil-
ities that catered to the needs of individual groups. These objectives would be difficult
to anticipate before launch, but they would almost certainly be in competition in the
same way that scientists’ labels on our terrestrial dataset were competing. Supporting
the changing objectives of each group with target detectors or other custom autonomy
code would be hugely expensive, if not completely impractical, in large part due to the
complexities involved in coding flight software [Dvorak et al. 2009].

Metric learning and clustering provide a mechanism for supporting changing mis-
sion objectives by allowing scientists on the ground to further inform downlink deci-
sions through small uplinks to the spacecraft that do not require modification to flight
software. Although onboard feature extraction will not undergo many changes over a
mission, scientists on the ground are free to experiment with training data and metric-
learning techniques without concern for computational or flight hardware complexity.
Our MDMC-LDA approach shows particular promise because it can balance multiple,
competing objectives, perhaps without making great concessions to any individual ob-
jective. Future work will investigate this behavior—empirically on different datasets
and theoretically on how objectives are balanced.

Our approach (feature extraction, clustering, metric learning) has been carefully
chosen so that it is feasible on current spacecraft hardware (notably, BAE Systems’
RAD7503, in use on dozens of spacecraft). We accomplished this by keeping to fast,
subpolynomial runtime. Future spaceflight processors will have greater computational
power, with parallelism playing an increasing role. Potential architectures include
OPERA4, the Xilinx Virtex 5 Pro5, and Coherent Logix’s Hyper X.6 For our current
approach, all feature extractors are trivially parallelized except for the frequency-
domain texture descriptors, which rely on a Fourier transform. Work on ever-faster,
even parallel implementations of the fast Fourier transform remains active, how-
ever. The MIMD (multiple instruction, multiple data) parallelization of the FFT in

3Details on the RAD750 can be found at www.baesystems.com. Here, we note that it runs at up to 200MHz,
has 128MB RAM, and is capable of approximately 400 MIPS–several orders of magnitude slower and about
a decade behind modern desktops at the time of this writing.
4OPERA (Onboard Processing Expandable Reconfigurable Architecture) was presented at SPC08, the First
Workshop on Fault-Tolerant Spaceborne Computing Employing New Technologies, hosted at Sandia Labs.
At the time of this writing, slides can be downloaded at www.zettaflops.org.
5http://www.xilinx.com/
6http://coherentlogix.com
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Averbuch et al. [1990] would be appropriate for the OPERA platform. In addition to
the optimizations we previously cited, k-means can also be parallelized (see for in-
stance, Stoffel and Belkoniene [1999]).

With our current approach being amenable to parallelization, there may be head-
room for more sophisticated clustering and feature extraction approaches as spacecraft
hardware advances. The scientist labeling strategies that we saw for our terrestrial
imagery demonstrated that a single image might be considered interesting based on
different criterion, such as dominant terrain type (e.g., sky, desert, mountain), or pres-
ence of a specific, possibly small feature (e.g., clouds, water). Our approach would likely
be more flexible to these objectives if higher-granularity summarization statistics were
employed, such as textons [Julesz 1981], wavelets [Manjunath and Ma 2002], or color-
based features [Burghouts and Geusebroek 2009]. These descriptors often require al-
ternative similarity measures (e.g., earth-movers distance [Rubner et al. 2000]), which
are not readily implementable with k-means but could be with kernel-based methods.
Additional spatial resolution can be obtained by taking statistics in the neighborhoods
of interest points detected based on saliency, or more expensively, within individually
detected regions or segments [Tuytelaars and Mikolajczyk 2008]. Future work will
explore these methods on additional datasets and with larger numbers of scientists.

6. CONCLUSION

The disparity between the amount of data that can be collected during the course
of future space exploration missions and the amount that can be downlinked back
to Earth is likely only going to increase. Onboard clustering provides scientists and
mission planners with improved control over downlink bandwidth through selective
data-return strategies, including representative sampling. Metric learning can tune
clusterings for specific, even changing mission objectives through small uploads that
do not require changes to flight software. Our new MDMC-LDA algorithm extends
metric learning so that multiple, possibly competing objectives can be simultaneously
accounted for. Using an aerial dataset and algorithms and features that could be im-
plemented on current spaceflight hardware (and parallelized for future hardware), we
show that autonomous clustering more closely corresponds with the way that four
planetary geologists grouped images than do nonadaptive random or periodic sam-
pling strategies. Metric-learning approaches further improved correspondence, with
MDMC-LDA substantially outperforming contemporary methods.
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